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Abstract

Runge–Kutta Discontinuous Galerkin (RKDG) schemes can provide highly accurate solutions for a large class of impor-
tant scientific problems. Using them for problems with shocks and other discontinuities requires that one has a strategy for
detecting the presence of these discontinuities. Strategies that are based on total variation diminishing (TVD) limiters can be
problem-independent and scale-free but they can indiscriminately clip extrema, resulting in degraded accuracy. Those based
on total variation bounded (TVB) limiters are neither problem-independent nor scale-free. In order to get past these limi-
tations we realize that the solution in RKDG schemes can carry meaningful sub-structure within a zone that may not need to
be limited. To make this sub-structure visible, we take a sub-cell approach to detecting zones with discontinuities, known as
troubled zones. A monotonicity preserving (MP) strategy is applied to distinguish between meaningful sub-structure and
shocks. The strategy does not indiscriminately clip extrema and is, nevertheless, scale-free and problem-independent. It,
therefore, overcomes some of the limitations of previously-used strategies for detecting troubled zones. The moments of
the troubled zones can then be corrected using a weighted essentially non-oscillatory (WENO) or Hermite WENO
(HWENO) approach. In the course of doing this work it was also realized that the most significant variation in the solution
is contained in the solution variables and their first moments. Thus the additional moments can be reconstructed using the
variables and their first moments, resulting in a very substantial savings in computer memory. We call such schemes hybrid
RKDG+HWENO schemes. It is shown that such schemes can attain the same formal accuracy as RKDG schemes, making
them attractive, low-storage alternatives to RKDG schemes. Particular attention has been paid to the reconstruction of
cross-terms in multi-dimensional problems and explicit, easy to implement formulae have been catalogued for third and
fourth order of spatial accuracy. The utility of hybrid RKDG+WENO schemes has been illustrated with several stringent
test problems in one and two dimensions. It is shown that their accuracy is usually competitive with the accuracy of RKDG
schemes of the same order. Because of their compact stencils and low storage, hybrid RKDG+HWENO schemes could be
very useful for large-scale parallel adaptive mesh refinement calculations.
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1. Introduction

Discontinuous Galerkin (DG) methods were first introduced by Reed and Hill [24] for solving linear hyper-
bolic problems associated with neutron transfer. Cockburn and Shu [7], Cockburn et al. [8] formulated the
method for non-linear hyperbolic problems and its application to the case of systems of conservation laws
in one and multiple dimensions was carried out in Cockburn et al. [9] and Cockburn and Shu [10]. The basic
idea of Cockburn et al. was a simple yet elegant one. They used a DG discretization in space along with the
total variation diminishing (TVD) preserving Runge–Kutta time discretization from Shu and Osher [26] to
arrive at a methodology they called Runge–Kutta Discontinuous Galerkin (RKDG). The method was explicit
and non-linearly stable. Exact or approximate Riemann solvers were used to obtain interface fluxes and a
limiting strategy that was based on total variation bounded (TVB) limiters was used to achieve non-linear
stability in the presence of strong shocks. A recent review of RKDG methods is available in Cockburn
et al. [11].

The RKDG method has several desirable features. All the moments of the solution are explicitly carried,
thus making a well-defined solution available at any point in the computational domain. It provides a simple
strategy for obtaining the update equations for all the moments, making it easy to arrive at a computer imple-
mentation of the method. The RKDG method can be formulated on logically rectangular meshes or on tri-
angular and tetrahedral meshes using a constructive strategy that is independent of the mesh used. It can
be formulated for all orders, a fact that has been used to advantage by Biswas et al. [5] to design hp-adaptive
RKDG formulations for the Euler equations and by Hesthaven and Warburton [16] to achieve very high
orders of accuracy for Maxwell’s equations.

A potential advantage of RKDG schemes stems from the fact that the high order of accuracy of RKDG
schemes can be achieved by using rather small stencils. The small stencils give RKDG methods an advantage
over the essentially non-oscillatory (ENO) schemes of Shu and Osher [26,27] and the weighted ENO (WENO)
schemes of Liu et al. [20], Jiang and Shu [18], Balsara and Shu [2] and Hu and Shu [17]. Recently Qiu and Shu
[21,22] formulated Hermite WENO (HWENO) schemes which also rely on smoothness indicators to pick the
best stencil, just like the WENO schemes. The WENO schemes all have stencil widths that increase with
increasing order, which might be held to be a disadvantage of the WENO schemes. Because WENO schemes
reconstruct all the moments of the solution, they, however, have the advantage of having a low-storage
requirement. RKDG schemes, on the other hand, have storage requirements that increase dramatically with
increasing orders, especially in multiple dimensions. The RKDG and WENO methods have complementing
strengths even when one assesses their performance on practical problems. RKDG formulations can be very
robust even in the presence of problems with strong shocks. WENO schemes offer high formal accuracy and
yet some of the higher order WENO schemes can lose robustness and even display spurious oscillations that
need to be controlled, as was discussed in Balsara and Shu [2] and Shi et al. [25]. It is, therefore, interesting to
ask whether there might be schemes that draw on the strengths of both approaches? In the course of carrying
out this work it was realized that an affirmative answer could be found for the above question. We call such
schemes hybrid RKDG+HWENO schemes. The hybrid RKDG+HWENO schemes have the intrinsic robust-
ness and smaller stencils of RKDG schemes and yet they draw on ideas from WENO schemes to reconstruct
some of the higher moments, thus enhancing the order of accuracy of the underlying RKDG scheme. The
schemes rely on evolving the lower moments with sufficiently high accuracy while reconstructing the higher
moments. The utilitarian justification of such a division stems from the fact that the majority of the variation
of the flow is contained in the first few moments. Since only the lower moments require fixed storage in com-
puter memory, the new schemes might have some attractive features for large-scale, high-performance parallel
computations. In this work we give explicit formulae for reconstructing the second and third moments using
the zeroth and first moments. For one- and two-dimensional problems, these formulae are furnished in a for-
mat that is easy to implement in numerical codes. It is thus possible to formulate hybrid RKDG+HWENO
schemes of third and fourth order accuracy.
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Despite their many attractive features, the development of limiters for RKDG schemes has presented some-
thing of a challenge. Several approaches have been tried. Early attempts by Cockburn and Shu [10] consisted
of using a TVB strategy to detect troubled zones. The TVB strategy suffers from the fact that it is neither scale-
free nor problem-independent. Biswas et al. [5] designed a limiter that adaptively limited the moments, going
from the highest moment to the lowest. Burbeau et al. [6] formulated a problem-independent limiter that limits
not just the variable but also its successive moments, while making some allowance for the existence of local
extrema. Krivodonova et al. [19] presented a limiting strategy that is based on a strong superconvergence at
the outflow boundaries for the Euler equations. Qiu and Shu [21] showed that the problem of non-linear lim-
iting can be broken up into two conceptual parts. The first part consisted of using a TVB limiter to detect
zones that could be classified as troubled zones because they had a discontinuity passing through them.
The second part consisted of using WENO schemes to supply the moments in the troubled zones. In subse-
quent work, Qiu and Shu [22,23] replaced the second part with a HWENO scheme for supplying the moments
in the troubled zones. The formulation by Qiu and Shu furnishes a logical strategy for rebuilding the moments
in zones that are already identified as troubled. It can even be used in the hybrid RKDG+HWENO schemes
mentioned in the previous paragraph. However, their strategy for detecting troubled zones is still based on the
TVB limiter, which suffers from the dual defects that it is neither scale-free nor problem-independent.

In order to ensure the end-to-end success of RKDG schemes and the previously mentioned hybrid
RKDG+HWENO schemes we still need a scale-free, problem-independent strategy for detecting troubled
zones. Such a strategy has to be built very carefully because it should be able to tell the difference between
a genuine discontinuity in the solution and a smoothly varying extremum. Higher order RKDG schemes
can carry a considerable amount of meaningful sub-structure within each zone. A good detector of troubled
zones should be able to tell apart this meaningful sub-structure from a genuine discontinuity. If a bad detector
is used, a great many zones will be flagged as troubled zones and the WENO scheme will be needlessly called
upon to supply moments in those zones. Practical experimentation has shown that while this will not degrade
the formal order of the RKDG scheme it will, nevertheless, degrade the intrinsic accuracy of the scheme. For
very higher order RKDG schemes, this degradation of intrinsic accuracy can be by several orders of magni-
tude. We realize, therefore, that as the order of accuracy of the RKDG scheme is increased we have to be will-
ing to carefully examine the solution for meaningful sub-scale structure and distinguish between smooth local
extrema at the sub-scale level within each zone and gross discontinuities in the flow. A good detector of trou-
bled zones should also have free parameters that allow us to decide how large and rapidly varying a local
extremum we are willing to tolerate before labeling it a spurious oscillation associated, for example, with
an upstream shock. Experience has shown that such parameters are usually determined by the intrinsic prop-
erties of the hyperbolic system being considered. To give an example, because the Euler system has a convex
flux and does not generate any compound shocks, it will permit such parameters to be set liberally. The mag-
netohydrodynamic (MHD) system, which has a non-convex flux and can generate compound shocks, will
begin to show spurious oscillations if the same parameters are set too liberally. In their examination of very
high order WENO schemes, Balsara and Shu [2] found that the monotonicity preserving (MP) limiter of Sur-
esh and Huynh [29] provided such a scale-free, problem-independent strategy for stabilizing WENO schemes.
The MP limiter uses a five-point stencil to detect local extrema, instead of a three-point stencil that is used by a
TVD limiter. In this work we make two extensions: (a) We reformulate the MP limiter, showing that there are
some further opportunities for providing extra space at well-defined extrema. (b) We apply the reformulated
MP limiter to suitably chosen sub-cells of a cell that is undergoing update via an RKDG or hybrid
RKDG+HWENO scheme. The above-mentioned advances enable us to efficiently detect troubled zones.
The detector of troubled zones described in this paper is scale-free and problem-independent in the following
sense: for a given hyperbolic system and a chosen order of the RKDG or hybrid RKDG+HWENO scheme we
choose the free parameters in the MP limiter once and once only. Once that choice is made, we require that all
problems with any shock strength can be treated without changing the parameters.

In this paper we focus on developing the present ideas very thoroughly for one- and two-dimensional prob-
lems. Extensions to three dimensions will be the topic of a later paper. In Section 2 we briefly catalogue
RKDG schemes and then introduce the hybrid RKDG+HWENO schemes. In Section 3 we present our strat-
egy for flagging troubled zones. In Section 4 we provide an extensive accuracy analysis. In Section 5 we present
several test problems. Conclusions are presented in Section 5.
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2. RKDG and hybrid RKDG+HWENO schemes

We divide this section into three sub-sections. In the first sub-section we provide a very brief introduction to
RKDG schemes with the intent of setting up a common notation. In the second sub-section we present the
hybrid RKDG+HWENO schemes in one dimension. In the third sub-section we present two-dimensional
extensions of hybrid RKDG+HWENO schemes.

2.1. Introduction to RKDG schemes

The RKDG schemes have been presented in detail in Cockburn and Shu [10]. Following Cockburn and Shu
[10], we present just enough detail here to set up a common notation for the rest of this paper. Thus consider
the system of conservation laws:
ou

ot
þ div fðuÞ ¼ 0 ð2:1Þ
Any specific component of the vector of conserved variables u can be denoted by u(x, t). Eq. (2.1) is discretized
over the physical domain X using the discontinuous Galerkin method. The approximate solution to u(x, t) is
sought in the finite element space of discontinuous functions
V ¼ fvh 2 L1ðXÞ : vhjK 2 V ðKÞ; 8K 2 T hg ð2:2Þ

where Th is a triangulation of the domain X and V ðKÞ is the local space. To take an example, consider sub-
dividing the real line into intervals labeled by ‘‘i’’ so that each such zone has a local coordinate that goes from
[�1/2,1/2]. Then, for a fourth order accurate representation, u(x, t) can be written in a set of modal bases,
P0(x), P1(x), P2(x) and P3(x) as:
uðx; tÞ ¼ u0ðtÞP 0ðxÞ þ u1ðtÞP 1ðxÞ þ u2ðtÞP 2ðxÞ þ u3ðtÞP 3ðxÞ

where P 0ðxÞ ¼ 1; P 1ðxÞ ¼ x; P 2ðxÞ ¼ x2 � 1

12
; P 3ðxÞ ¼ x3 � x

3

20

ð2:3Þ
The modal bases in Eq. (2.3) are just the Legendre polynomials, suitably scaled to the local coordinates of the
zone being considered. For logically rectangular meshes in multiple dimensions, one can use tensor products of
the above bases. The bases used in Eq. (2.3) are orthogonal but not orthonormal and result in the mass matrix:
M ¼ diag 1;
1

12
;

1

180
;

1

2800

� �
ð2:4Þ
The terms in Eq. (2.3) can also be viewed as the modes in a functional expansion. One can also take the view
that they represent the zeroth through third moments of the solution u(x, t) within the zone. Since it will be
useful to be able to calculate these moments, we briefly explain that in the Appendix. The equations for
the evolution of ui(t) can be obtained by using a smooth test function vðxÞ to make a weak formulation of
Eq. (2.1) over the domain K as follows:
d

dt

Z
K

uðx; tÞvðxÞdxþ
X
e2K

Z
e

fðuðx; tÞÞ � ne;KvðxÞdC�
Z

K
fðuðx; tÞÞ � gradvðxÞdx ¼ 0 ð2:5Þ
Here ne,K denotes the outward unit normal to the edge ‘‘e’’ of the domain K. The smooth test functions vðxÞ are
usually drawn from the set of bases functions, Eq. (2.2). The integrals in Eq. (2.5) are replaced by discrete sums
using quadrature rules of the appropriate accuracy. We take our example from Eq. (2.3) and explicitly write
out the evolution equations for the zeroth through third moments as follows:
du0ðtÞ
dt
þ ½f ð1=2Þ � f ð�1=2Þ� ¼ 0 ð2:6Þ

1

12

du1ðtÞ
dt
þ ½P 1ð1=2Þf ð1=2Þ � P 1ð�1=2Þf ð�1=2Þ� �

Z 1=2

�1=2

f ðuðx; tÞÞP 01ðxÞdx

" #
¼ 0 ð2:7Þ
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1

180

du2ðtÞ
dt
þ ½P 2ð1=2Þf ð1=2Þ � P 2ð�1=2Þf ð�1=2Þ� �

Z 1=2

�1=2

f ðuðx; tÞÞP 02ðxÞdx

" #
¼ 0 ð2:8Þ

1

2800

du3ðtÞ
dt
þ ½P 3ð1=2Þf ð1=2Þ � P 3ð�1=2Þf ð�1=2Þ� �

Z 1=2

�1=2

f ðuðx; tÞÞP 03ðxÞdx

" #
¼ 0 ð2:9Þ
The fluxes f(1/2) and f(�1/2) can be obtained by solving a Riemann problem at the zone boundaries. Notice
that because of our choice of a one-dimensional formulation the surface integrals at the zone boundaries have
been much simplified. Typically, simple flux functions such as the ones by Harten, Lax and van Leer flux or
(local) Lax–Friedrichs flux are used. The integrals in Eqs. (2.7)–(2.9) are evaluated using Gauss quadrature
points of the appropriate order and such quadrature points and their weights are catalogued in texts by Stroud
and Secrest [28] or Abromowitz and Stegun [1]. Notice that Eq. (2.6) is our familiar expression of a conser-
vation law while the higher moments in Eqs. (2.7)–(2.9) represent evolutionary equations for the moments
and so do not have to be in a conservation law form. This completes our description of the RKDG scheme.

2.2. Hybrid RKDG+HWENO schemes

We now describe the hybrid RKDG+HWENO schemes. We preface our description by pointing out that if
the application scientist has sufficient amount of computer memory to retain all the moments up to the desired
level of accuracy then s/he should do so. In that case, RKDG schemes will serve the purpose optimally
because none of the data associated with the higher moments will need to be destroyed at the end of a timestep
and reconstructed at the start of the next timestep. However, most large applications almost never have a suf-
ficient amount of computer memory. Furthermore, large parallel applications usually use a certain style of
processing data where the computation is domain-decomposed into a large number of sub-domains that
are processed using a substantially smaller number of processors. A prominent example of such an application
could be large, parallel adaptive mesh refinement calculations where the solution is stored over many thou-
sands of sub-domains and those sub-domains are processed using a few hundred to a thousand processors,
see Balsara and Norton [3]. In such calculations, one wants to store a small amount of solution-specific data
in each of the sub-domains. However, one can assign a substantially larger amount of local data on each pro-
cessor and use it for processing each of the sub-domains. We build the hybrid RKDG+HWENO algorithm
around the premise that we are willing to store the variables as well as their slopes for each of the sub-domains.
However, for the third order hybrid RKDG+HWENO scheme we would like to reconstruct the second
moment in Eq. (2.3) and use the third order quadratures in Eqs. (2.6)–(2.8) to evolve the terms for an entire
timestep, after which we store just the variables and their slopes back to the computer’s main memory. Sim-
ilarly, for the fourth order hybrid RKDG+HWENO scheme we would like to reconstruct the second and third
moments in Eq. (2.3) and use the fourth order quadratures in Eqs. (2.6)–(2.9) to evolve the terms for an entire
timestep, after which we store just the variables and their slopes back to the computer’s main memory. In the
next three sub-sections we describe our reconstruction strategy for third and fourth order hybrid
RKDG+HWENO schemes as well as our treatment of cross-terms for multi-dimensional problems.

2.2.1. Reconstruction strategy for third order hybrid RKDG+HWENO scheme

In this sub-section we reconstruct the second moment in the zone ‘‘i’’ where we take ui as representing the
mean value in that zone and vi as representing the first moment (i.e. the slope) in the same zone. In terms of
Eq. (2.3), ui and vi are the first two coefficients in the modal expansion. If the zone ‘‘i’’ has been identified as
being a troubled zone then we assume that we have used the strategy given in Qiu and Shu [21] to obtain a
corrected value for the first moment vi. We also base our scheme on using the values ui�1, ui, vi and ui+1 to
reconstruct the second moment in the zone ‘‘i’’. Following the HWENO philosophy of Qiu and Shu [22],
we wish to find two quadratic polynomials: the first quadratic, p0(x), covers the stencil formed by zones
‘‘i’’ and ‘‘i � 1’’ and reproduces the zeroth and first moments, ui and vi, in zone ‘‘i’’ and the zeroth moment
‘‘ui�1’’ in zone ‘‘i � 1’’. The second quadratic, p1(x), covers the stencil formed by zones ‘‘i’’ and ‘‘i � 1’’ and
reproduces the zeroth and first moments, ui and vi, in zone ‘‘i’’ and the zeroth moment ‘‘ui+1’’ in zone ‘‘i + 1’’.
We wish to obtain the solution at preferred Gauss quadrature points within the zone ‘‘i’’ so that we can use the
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value of the solution at those quadrature points to obtain the second moment, i.e. the third coefficient in the
modal expansion that is given in Eq. (2.3). The Gauss quadrature points for third order accurate integration in
the local coordinates of zone ‘‘i’’ that span [�0.5,0.5] are given by xG ¼ �

ffiffiffiffiffiffiffiffiffiffi
3=20

p
, xG = 0 and xG ¼

ffiffiffiffiffiffiffiffiffiffi
3=20

p
.

The corresponding weights can be found from Stroud and Secrest [28]. (Note that the standard Gauss formu-
lae in Stroud and Secrest’s text use the domain [�1,1] so a normalization by a factor of 0.5 is needed for the
weights.) Following the HWENO philosophy of Qiu and Shu [22], we choose the large stencil formed by zones
‘‘i � 1’’, ‘‘i’’ and ‘‘i + 1’’ and find the cubic polynomial Q(x) which reproduces the zeroth and first moments, ui

and vi, in zone ‘‘i’’, the zeroth moment ‘‘ui�1’’ in zone ‘‘i � 1’’ and the zeroth moment ‘‘ui+1’’ in zone ‘‘i + 1’’.
The HWENO strategy consists of trying to find positive linear weights, cG

k (also known as optimal weights) for
each Gauss quadrature point xG that satisfy the condition:
QðxGÞ ¼
X1

k¼0

cG
k pkðxGÞ ð2:10Þ
For the third order hybrid RKDG+WENO we come up with the extremely simple result that:
cG
k ¼

1

2
for all Gauss quadrature points \G" and both polynomials \k": ð2:11Þ
Once the optimal weights are known, we combine the solution from the each of the two small stencils at each
of the Gauss quadrature points using smoothness measures that keep track of how rapidly the solution is vary-
ing in that stencil. The smoothness measures for each stencil evaluate the quality of the data available on that
stencil and are, therefore, used to determine the fraction of the solution that will be used from that stencil.
Since the procedure favors the stencil with the smoothest solution, it introduces an upwind bias into the
scheme. The construction of the smoothness measures follows Jiang and Shu [18]. To complete the present
scheme we simply need to provide closed-form expressions for the smoothness measures and explicit evalua-
tions of the polynomials p0(x) and p1(x) at each of the Gauss quadrature points xG. The smoothness measure
for the stencil spanned by the polynomial p0(x) is given by:
b0 ¼ ð13ðui � ui�1 � viÞ2 þ 3v2
i Þ=3 ð2:12Þ
The smoothness measure for the stencil spanned by the polynomial p1(x) is given by:
b1 ¼ ð13ðuiþ1 � ui � viÞ2 þ 3v2
i Þ=3 ð2:13Þ
We only need to provide explicit evaluations of the polynomials p0(x) and p1(x) at two of the three Gauss
quadrature points, since the third can be obtained by symmetry considerations. Thus at xG = 0 the polynomi-
als, with coefficients that are evaluated with 16 digit accuracy, are:
p0ðxGÞ ¼ 1:0833333333333333ui � 0:08333333333333333ui�1 � 0:08333333333333333vi

p1ðxGÞ ¼ 1:0833333333333333ui � 0:08333333333333333uiþ1 þ 0:08333333333333333vi
ð2:14Þ
At xG ¼
ffiffiffiffiffiffiffiffiffiffi
3=20

p
the polynomials, with coefficients that are evaluated with 16 digit accuracy, are:
p0ðxGÞ ¼ 0:9333333333333333ui þ 0:0666666666666666ui�1 þ 0:4539650012874083vi

p1ðxGÞ ¼ 0:9333333333333333ui þ 0:0666666666666666uiþ1 þ 0:3206316679540702vi
ð2:15Þ
The solution u(xG) at a Gauss quadrature point xG can be constructed by first building the non-linear weights,
xG

k , as follows:
xG
k ¼

�xG
kP

k �xG
k

; �xG
k ¼

cG
k

ðbk þ eÞ2
ð2:16Þ
We take e = 10�12 in Eq. (2.16). The solution u(xG) is then given by:
uðxGÞ ¼
X

k

xG
k pkðxGÞ ð2:17Þ
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The solution at all the Gauss quadrature points can then be used in conjunction with the modal basis to recon-
struct the second moment, as shown in the Appendix. This completes our description of the third order hybrid
RKDG+HWENO scheme.

We make several observations below:

(1) It is known that for schemes that are better than second order the best flagging strategies for detecting
troubled zones rely on characteristic variables. The hybrid RKDG+HWENO schemes are well matched
with such a flagging strategy because for a small addition to the cost of the flagging strategy one can also
obtain an additional one or two orders of accuracy. Moreover, this advantage is obtained without any
significant increase in storage.

(2) For multiple dimensions we can still obtain the quadratic terms using this strategy. We will present fur-
ther ideas for the reconstruction of cross-terms in Section 2.3.1.

(3) While the method is described here as if it is being applied to a scalar problem, it extends naturally to
systems as long as characteristic variables are used. We have found it worthwhile to use characteristic
variables in all the tests reported here.

(4) Qiu and Shu [22] suggested that one can correct the first moment in the central zone ‘‘i’’ using a
HWENO scheme that uses the uncorrected first moments in zones ‘‘i + 1’’ and ‘‘i � 1’’. We favor the
WENO correction strategies for obtaining the slopes from Qiu and Shu [21]. In this work we always
use the corrected first moment vi to reconstruct the higher moments. Once such a corrected first moment
is available we can use the approach in this section to reconstruct the second moment.

(5) When using Runge–Kutta timestepping there are two ways in which this reconstruction can be used on a
sub-domain. In the first approach, we reconstruct the second moment in each fractional timestep. In the
second, we reconstruct the second moment at the start of a timestep on a sub-domain and evolve it for
the current timestep. The latter requires a larger layer of ghost boundaries than the former. Experimen-
tation has shown that both strategies produce comparable results, hence we reconstruct the second
moment in each fractional timestep for all the test problems shown here.

(6) The ADER approaches that were first developed by Titarev and Toro [31] and applied to DG schemes
by Dumbser and Munz [12,13] would prove especially useful here because they would ameliorate the
problems associated with Runge–Kutta timestepping that are mentioned in the previous point. Such
methods have also been extended to magnetohydrodynamics by Taube et al [14].

(7) When the slopes are available, the present method has a small advantage over the WENO-based limiters
in Qiu and Shu [21] because it generates positive weights for the Gauss quadrature points instead of the
Gauss–Lobatto points. This advantage also extends to the fourth order hybrid RKDG+HWENO
scheme described in the next sub-section.

(8) Notice that in a well-resolved calculation most zones will have smooth flow. Thus the first moment will
not go through any limiting and the scheme described above will be a third order scheme with a compact
stencil that extends over just the immediate neighbors of the zone being considered.

(9) The present set of ideas has some parallels with the work of Takewaki et al. [30] though the underlying
RKDG scheme is different as is the reconstruction strategy for higher moments. The present schemes are
also upwind and conservative.

(10) The ideas described here are also potentially very useful for unstructured meshes.
(11) Because the second moment is reconstructed, it is possible that the present scheme might permit a higher

Courant number than the limiting Courant numbers catalogued in Cockburn et al. [11] for the corre-
sponding RKDG scheme of the same order. In this work though, we use Courant numbers for the third
order hybrid RKDG+HWENO scheme that are the same as those used for p = 2 RKDG.

(12) For notational consistency we will also refer to the third order accurate hybrid RKDG+HWENO
scheme as the p = 2 RKDG+HWENO scheme.

2.2.2. Reconstruction strategy for fourth order hybrid RKDG+HWENO scheme

In this sub-section we reconstruct the second and third moments in the zone ‘‘i’’ where we take ui as rep-
resenting the mean value in that zone and vi as representing the first moment in the same zone. If the zone ‘‘i’’
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has been identified as being a troubled zone then we assume that we have used the strategy given in Qiu and
Shu [21] to obtain a corrected value for the first moment vi. We also base our scheme on using the values ui�2,
ui�1, ui, vi, ui+1 and ui2 to reconstruct the second and third moments in the zone ‘‘i’’. Again following the
HWENO philosophy of Qiu and Shu [22], we wish to find three cubic polynomials : The first cubic, p0(x), cov-
ers the stencil formed by zones ‘‘i’’, ‘‘i � 1’’ and ‘‘i � 2’’ and reproduces the zeroth and first moments, ui and vi,
in zone ‘‘i’’, the zeroth moment ‘‘ui�1’’ in zone ‘‘i � 1’’ and the zeroth moment ‘‘ui�2’’ in zone ‘‘i � 2’’. The
second cubic, p1(x), covers the stencil formed by zones ‘‘i � 1’’, ‘‘i’’ and ‘‘i + 1’’ and reproduces the zeroth
and first moments, ui and vi, in zone ‘‘i’’, the zeroth moment ‘‘ui�1’’ in zone ‘‘i � 1’’ and the zeroth moment
‘‘ui+1’’ in zone ‘‘i + 1’’. The third cubic, p2(x), covers the stencil formed by zones ‘‘i’’, ‘‘i + 1’’ and ‘‘i + 2’’ and
reproduces the zeroth and first moments, ui and vi, in zone ‘‘i’’, the zeroth moment ‘‘ui+1’’ in zone ‘‘i + 1’’ and
the zeroth moment ‘‘ui+2’’ in zone ‘‘i + 2’’. We wish to obtain the solution at preferred Gauss quadrature
points within the zone ‘‘i’’ so that we can use the value of the solution at those quadrature points to obtain
the second and third moments, i.e. the third and fourth coefficients in the modal expansion that is given in Eq.
(2.3). The Gauss quadrature points for fourth order accurate integration in the local coordinates of the zone
‘‘i’’ that span [�0.5,0.5] are given by xG = �0.43056815579702623, xG = �0.1699905217924281,
xG = 0.1699905217924281 and xG = 0.43056815579702623. The corresponding weights can be found from
Stroud and Secrest [28] and can be used after normalizing by a factor of 0.5. Following the HWENO
philosophy of Qiu and Shu [22], we choose the large stencil formed by zones ‘‘i � 2’’, ‘‘i � 1’’, ‘‘i’’, ‘‘i + 1’’
and ‘‘i + 2’’ and find the quintic polynomial Q(x) which reproduces the zeroth and first moments, ui and vi,
in zone ‘‘i’’, the zeroth moment ‘‘ui�2’’ in zone ‘‘i � 2’’, the zeroth moment ‘‘ui�1’’ in zone ‘‘i � 1’’, the zeroth
moment ‘‘ui+1’’ in zone ‘‘i + 1’’ and the zeroth moment ‘‘ui+2’’ in zone ‘‘i + 2’’. The HWENO strategy consists
of trying to find the optimal weights, cG

k for each Gauss quadrature point xG that satisfy the condition in Eq.
(2.10). For the third order hybrid RKDG+WENO we find the optimal weights for xG = 0.1699905217924281
to be:
cG
0 ¼ 0:1086206894023039; cG

1 ¼ 0:5497704011732130; cG
2 ¼ 0:3416089094244832 ð2:18Þ
The corresponding optimal weights for xG = 0.43056815579702623 are:
cG
0 ¼ 0:1493553825751190; cG

1 ¼ 0:6186539367058337; cG
2 ¼ 0:2319906807190475 ð2:19Þ
The optimal weights at the two other Gauss quadrature points can be obtained by symmetry. The smoothness
measure for the stencil spanned by the polynomial p0(x) is given by:
b0 ¼ ð170995u2
i þ 274900u2

i�1 � 117196ui�1ui�2 þ 13291u2
i�2 þ uið�432604ui�1 þ 90614ui�2 � 252060viÞ

þ 316320ui�1vi � 64260ui�2vi þ 98460v2
i Þ=4332 ð2:20Þ
The smoothness measure for the stencil spanned by the polynomial p1(x) is given by:
b1 ¼ ð6292u2
i þ 13291u2

i�1 � 20290ui�1uiþ1 þ 13291u2
iþ1 � 6292uiðui�1 þ uiþ1Þ þ 46740ui�1vi

� 46740uiþ1vi þ 48060v2
i Þ=1452 ð2:21Þ
The smoothness measure for the stencil spanned by the polynomial p2(x) is given by:
b2 ¼ ð170995u2
i þ 274900u2

iþ1 þ 13291u2
iþ2 þ 64260uiþ2vi þ 98460v2

i � 4uiþ1ð29299uiþ2 þ 79080viÞ
þ uið�432604uiþ1 þ 90614uiþ2 þ 252060viÞÞ=4332 ð2:22Þ
At xG = 0.1699905217924281 the polynomials, with coefficients that are evaluated with 16 digit accuracy, are:
p0ðxGÞ ¼ 1:117962827992853ui � 0:1391382520457803ui�1 þ 0:02117542405292723ui�2

þ 0:07320311785250228vi

p1ðxGÞ ¼ 1:0544365558340714ui � 0:017860823379015234ui�1 � 0:03657573245505612uiþ1

þ 0:188705430868469vi

p2ðxGÞ ¼ 1:0854579859134137ui � 0:09579846260652769uiþ1 þ 0:010340476693114081uiþ2

þ 0:2451080310127276vi

ð2:23Þ
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At xG = 0.43056815579702623 the polynomials, with coefficients that are evaluated with 16 digit accuracy, are:
p0ðxGÞ ¼ 0:7972876757209407ui þ 0:23626456455437267ui�1 � 0:03355224027531344ui�2

þ 0:599728239800772vi

p1ðxGÞ ¼ 0:897944396546881ui þ 0:044101733886668416ui�1 þ 0:057953869566450496uiþ1

þ 0:4167160201172442vi

p2ðxGÞ ¼ 0:8213466482174043ui þ 0:2041859345590879uiþ1 � 0:02553258277649225uiþ2

þ 0:27744738679092285vi

ð2:24Þ
The polynomials at the two other Gauss quadrature points can be obtained by symmetry. The solution can be
obtained at the Gauss quadrature points by using Eqs. (2.16) and (2.17). The second and third moments can
be reconstructed using the Appendix. This completes our description of the fourth order hybrid
RKDG+HWENO scheme.

We make a few observations below:

(1) Notice that there is a difference in the way Eqs. (2.6) and (2.7) are used in the third and fourth order
RKDG+WENO schemes. For the third order scheme we use third order accurate spatial quadrature
and third order accurate Runge–Kutta timestepping. For the fourth order scheme the spatial quadrature
and timestepping have to be upgraded to fourth order accuracy.

(2) It is tempting to try and use both the variable and slope in each of the zones ‘‘i � 1’’, ‘‘i’’ and ‘‘i + 1’’ to
obtain a RKDG+HWENO scheme that has an even more compact stencil. Such an effort results in neg-
ative values for the optimal weights and is, therefore, unproductive. Following the idea of Friedrichs
[15], we even tried assigning equal linear weights of 0.5 to each of the stencils and used the smoothness
measures to combine the two stencils non-linearly. The resulting scheme was still found to be unstable.
Thus there seems to be a limit to the level of compactness that can be achieved.

(3) For notational consistency we will also refer to the fourth order accurate hybrid RKDG+HWENO
scheme as p = 3 RKDG+HWENO scheme.

2.3. Multidimensional reconstruction strategy for higher order hybrid RKDG+HWENO schemes

The above sub-sections have provided considerable detail on the reconstruction strategy in one dimension.
However, it is interesting to develop the same scheme for multiple dimensions. In this section we focus on two
dimensions, but the same methods translate well to three dimensions. We will denote the variable in zone (i, j)
as ui,j and its x and y-directional slopes as vi,j and wi,j respectively. A general third order accurate representa-
tion in two dimensions is given by:
uðx; y; tÞ ¼ ui;jðtÞP 0ðxÞ þ vi;jðtÞP 1ðxÞ þ wi;jðtÞP 1ðyÞ þ uxx;i;jðtÞP 2ðxÞ þ uyy;i;jðtÞP 2ðyÞ þ uxy;i;jðtÞP 1ðxÞP 1ðyÞ
ð2:25Þ
Retaining just the first line in the above test function yields a second order scheme while inclusion of the sec-
ond line in (2.25) yields a third order scheme. The multi-dimensional reconstruction problem consists of find-
ing a good representation for uxx,i,j(t), uyy,i,j(t) and uxy,i,j(t). In practice, uxx,i,j(t) and uyy,i,j(t) can be found using
a dimensionally swept strategy in each direction, as shown in the previous sub-section, so the problem reduces
to finding a good representation for the cross-term uxy,i,j(t). The strategy for obtaining uxy,i,j(t) from various
compact stencils is presented in Section 2.3.1 as is the strategy for limiting the cross-term.

A fourth order accurate representation in two dimensions is given by:
uðx; y; tÞ ¼ ui;jðtÞP 0ðxÞ þ vi;jðtÞP 1ðxÞ þ wi;jðtÞP 1ðyÞ þ uxx;i;jðtÞP 2ðxÞ þ uyy;i;jðtÞP 2ðyÞ
þ uxy;i;jðtÞP 1ðxÞP 1ðyÞ þ uxxx;i;jðtÞP 3ðxÞ þ uyyy;i;jðtÞP 3ðyÞ þ uxxy;i;jðtÞP 2ðxÞP 1ðyÞ
þ uxyy;i;jðtÞP 1ðxÞP 2ðyÞ ð2:26Þ
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As before, uxx,i,j(t), uyy,i,j(t), uxxx,i,j(t) and uyyy,i,j(t) can be found using a dimensionally swept strategy in each
direction, as shown in the previous sub-section, so the problem reduces to finding a good representation for
the cross-terms uxy,i,j(t), uxxy,i,j(t) and uxyy,i,j(t). The strategy for obtaining uxy,i,j(t), uxxy,i,j(t) and uxyy,i,j(t)
from various compact stencils is presented in Section 2.3.2 as is the strategy for limiting the cross-terms.
Schemes of fifth and higher order can be constructed by repeating the same procedure with a larger basis
set.

2.3.1. Multidimensional reconstruction strategy for the cross-terms for third order hybrid RKDG+HWENO

scheme

Fig. 1 shows the nine zones around zone ði; jÞ that are used to carry out spatially third order accurate recon-
struction. The maximally compact eight stencils that yield a third order accurate interpolant are also shown.
The stencils are labeled S1 through S8. The reconstruction in stencil S1 is based on requiring the polynomial in
Eq. (2.25) to satisfy the following constraints:
Fig. 1.
stencil
Z Z
½�3=2;�1=2��½�1=2;1=2�

uðx; y; tÞdxdy ¼ ui�1;jðtÞ;
Z Z

½�1=2;1=2��½�3=2;�1=2�
uðx; y; tÞdxdy ¼ ui;j�1ðtÞ;Z Z

½�3=2;�1=2��½�3=2;�1=2�
uðx; y; tÞdxdy ¼ ui�1;j�1ðtÞ

ð2:27Þ
Nine zones around zone ði; jÞ that are used to carry out spatially third order accurate reconstruction. The maximally compact eight
s that yield a third order accurate interpolant are also shown. The stencils are labeled S1 through S8.
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As a result, the coefficients uxx,i,j(t), uyy,i,j(t) and uxy,i,j(t) for stencil S1 are given by:
uxx;i;jðtÞ ¼ ui�1;jðtÞ � ui;jðtÞ þ vi;jðtÞ
uyy;i;jðtÞ ¼ ui;j�1ðtÞ � ui;jðtÞ þ wi;jðtÞ
uxy;i;jðtÞ ¼ ui�1;j�1ðtÞ � ui;j�1ðtÞ � ui�1;jðtÞ þ ui;jðtÞ

ð2:28Þ
The remaining stencils are given below and the time level ‘‘(t)’’ that is explicited in Eq. (2.28) is dropped. Thus
for S2 we have:
uxx;i;j ¼ uiþ1;j � ui;j � vi;j

uyy;i;j ¼ ui;j�1 � ui;j þ wi;j

uxy;i;j ¼ ui;j�1 � uiþ1;j�1 � ui;j þ uiþ1;j

ð2:29Þ
S3 gives:
uxx;i;j ¼ ui�1;j � ui;j þ vi;j

uyy;i;j ¼ ui;jþ1 � ui;j � wi;j

uxy;i;j ¼ ui�1;j � ui;j � ui�1;jþ1 þ ui;jþ1

ð2:30Þ
S4 gives:
uxx;i;j ¼ uiþ1;j � ui;j � vi;j

uyy;i;j ¼ ui;jþ1 � ui;j � wi;j

uxy;i;j ¼ ui;j � uiþ1;j � ui;jþ1 þ uiþ1;jþ1

ð2:31Þ
S5 gives:
uxx;i;j ¼
1

2
ðui�1;j�1 � 2ui;j�1 þ uiþ1;j�1Þ

uyy;i;j ¼ ui;j�1 � ui;j þ wi;j

uxy;i;j ¼
1

2
ðui�1;j�1 � uiþ1;j�1 þ 2vi;jÞ

ð2:32Þ
S6 gives:
uxx;i;j ¼ uiþ1;j � ui;j � vi;j

uyy;i;j ¼
1

2
ðuiþ1;j�1 � 2uiþ1;j þ uiþ1;jþ1Þ

uxy;i;j ¼
1

2
ðuiþ1;j�1 � uiþ1;jþ1 þ 2wi;jÞ

ð2:33Þ
S7 gives:
uxx;i;j ¼
1

2
ðui�1;jþ1 � 2ui;jþ1 þ uiþ1;jþ1Þ

uyy;i;j ¼ ui;jþ1 � ui;j � wi;j

uxy;i;j ¼
1

2
ðui�1;jþ1 � uiþ1;jþ1 þ 2vi;jÞ

ð2:34Þ
S8 gives:
uxx;i;j ¼ ui�1;j � ui;j þ vi;j

uyy;i;j ¼
1

2
ðui�1;j�1 � 2ui�1;j þ ui�1;jþ1Þ

uxy;i;j ¼
1

2
ðui�1;j�1 � ui�1;jþ1 þ 2wi;jÞ

ð2:35Þ
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The S1 to S4 stencils catalogued above can be viewed as stencils that permit us to select upwind solutions
that are diagonally aligned, while the S5 to S8 stencils permit us to select solutions that are upwinded in mesh-
aligned directions. Unlike WENO, the goal in reconstructing higher order terms is not to improve the accu-
racy of the solution by one or more orders. As a result, there is no need to seek out optimal weights for all the
stencils. We, therefore, assign equal weights to all the stencils and construct smoothness measures for each
stencil by using:
b ¼
Z Z

½�1=2;1=2��½�1=2;1=2�

o2uðx; y; tÞ
ox2

� �2

þ o2uðx; y; tÞ
oy2

� �2

þ o2uðx; y; tÞ
oxoy

� �2
" #

dxdy ð2:36Þ
The smoothness measures are easily constructed using the coefficients in Eqs. (2.28)–(2.35). It is important to
realize that the uxx,i,j and uyy,i,j terms are more easily reconstructed using the expressions in Section 2.2.1. In
fact, the expressions in Section 2.2.1 are very suitable for reconstruction in the characteristic variables. Since
characteristics-based reconstruction is desired in the design of higher order schemes, we construct the uxx,i,j

and uyy,i,j terms by limiting in the characteristic variables and then projecting back into the space of conserved
variables. For that reason, even though the reconstruction presented here can yield expressions for uxx,i,j and
uyy,i,j terms, we only need the reconstruction for the construction of the cross-term, uxy,i,j. It is, therefore, inter-
esting to ask whether the construction of the computationally costly smoothness measures described in Eq.
(2.36) can be dispensed with entirely? We have indeed found that by sequentially applying a min-mod limiter
to all the uxy,i,j cross-terms for each of the eight stencils S1 to S8, the evaluation of the smoothness measures
can be avoided entirely. Numerical experimentation has shown that this causes only a small degradation in the
quality of the solution at a much-reduced cost. This completes our description of the reconstruction of cross-
terms for the third order hybrid RKDG+HWENO scheme.

We make a few observations below:

(1) The idea of limiting in each of the modes has already been explored in Burbeau et al. [6]. The style and
sequence in which the limiting is applied is, however, different here.

(2) In this work we have chosen to limit the uxy,i,j cross-term in the space of conserved variables. This is the
least expensive strategy and seems to work well for the problems explored here.

(3) It is also possible to formulate the limiter in characteristic variables. The large number of projections
into the space of characteristic variables may make the process computationally costly. It is, however,
conceivable that for small systems the computational complexity is not prohibitive. When making such
a projection it may be interesting to use diagonally oriented eigenvectors for stencils S1 to S4 and mesh-
aligned eigenvectors for stencils S5 to S8.

(4) The stencils S1 to S8 are unique only in that they are the most compact choices. It is certainly possible to
choose other sets of stencils. Just as S5 to S8 represent upwinded stencils along the cardinal directions of
the mesh and S1 to S4 represent upwinded stencils along the primary inter-cardinal directions of the
mesh, it is certainly possible to choose stencils that represent the secondary inter-cardinal directions
of the mesh.

2.3.2. Multidimensional reconstruction strategy for the cross-terms for fourth order hybrid RKDG+HWENO

scheme

Fig. 2 shows the 21 zones around zone (i, j) that are used to carry out spatially fourth order accurate recon-
struction. The maximally compact eight stencils that yield a fourth order accurate interpolant are also shown.
The stencils are labeled S1 through S8. The reconstruction in stencil S1 is based on requiring the polynomial in
Eq. (2.26) to satisfy the following constraints:
Z Z

½�3=2;�1=2��½�1=2;1=2�
uðx; y; tÞd xdy ¼ ui�1;jðtÞ;

Z Z
½�1=2;1=2��½�3=2;�1=2�

uðx; y; tÞd xdy ¼ ui;j�1ðtÞ;Z Z
½�3=2;�1=2��½�3=2;�1=2�

uðx; y; tÞdxdy ¼ ui�1;j�1ðtÞ;
Z Z

½�5=2;�3=2��½�1=2;1=2�
uðx; y; tÞdxdy ¼ ui�2;jðtÞ;



Fig. 2. Twenty-one zones around zone ði; jÞ that are used to carry out spatially fourth order accurate reconstruction. The maximally
compact eight stencils that yield a fourth order accurate interpolant are also shown. The stencils are labeled S1 through S8.
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Z Z
½�5=2;�3=2��½�3=2;�1=2�

uðx; y; tÞdxdy ¼ ui�2;j�1ðtÞ;
Z Z

½�1=2;1=2��½�5=2;�3=2�
uðx; y; tÞdxdy ¼ ui;j�2ðtÞ;Z Z

½�3=2;�1=2��½�5=2;�3=2�
uðx; y; tÞdxdy ¼ ui�1;j�2ðtÞ ð2:37Þ
As before, the time level ‘‘(t)’’ that is explicited in Eqs. (2.26) and (2.37) is dropped. As a result, the coefficients
uxx,i,j, uyy,i,j, uxy,i,j, uxxx,i,j, uyyy,i,j, uxxy,i,j and uxyy,i,j for stencil S1 are given by:
uxx;i;j ¼
1

38
ð�11ui�2;j þ 82ui�1;j � 71ui;j þ 60vi;jÞ

uyy;i;j ¼
1

38
ð�71ui;j � 11ui;j�2 þ 82ui;j�1 þ 60wi;jÞ
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uxy;i;j ¼
1

2
ðui�2;j � 5ui�1;j þ 4ui;j � ui�1;j�2 þ ui;j�2 � ui�2;j�1 þ 6ui�1;j�1 � 5ui;j�1Þ

uxxx;i;j ¼ �
5

19
ðui�2;j � 4ui�1;j þ 3ui;j � 2vi;jÞ

uyyy;i;j ¼ �
5

19
ð3ui;j þ ui;j�2 � 2ð2ui;j�1 þ wi;jÞÞ

uxxy;i;j ¼
1

2
ðui�2;j � 2ui�1;j þ ui;j � ui�2;j�1 þ 2ui�1;j�1 � ui;j�1Þ

uxyy;i;j ¼
1

2
ð�ui�1;j þ ui;j � ui�1;j�2 þ ui;j�2 þ 2ui�1;j�1 � 2ui;j�1Þ ð2:38Þ
S2 gives:
uxx;i;j ¼
1

38
ð�71ui;j þ 82uiþ1;j � 11uiþ2;j � 60vi;jÞ

uyy;i;j ¼
1

38
ð�71ui;j � 11ui;j�2 þ 82ui;j�1 þ 60wi;jÞ

uxy;i;j ¼
1

2
ðuiþ2;j�1 � 4ui;j þ 5uiþ1;j � uiþ2;j � ui;j�2 þ uiþ1;j�2 þ 5ui;j�1 � 6uiþ1;j�1Þ

uxxx;i;j ¼
5

19
ð3ui;j � 4uiþ1;j þ uiþ2;j þ 2vi;jÞ

uyyy;i;j ¼ �
5

19
ð3ui;j þ ui;j�2 � 2ð2ui;j�1 þ wi;jÞÞ

uxxy;i;j ¼
1

2
ð�uiþ2;j�1 þ ui;j � 2uiþ1;j þ uiþ2;j � ui;j�1 þ 2uiþ1;j�1Þ

uxyy;i;j ¼
1

2
ð�ui;j þ uiþ1;j � ui;j�2 þ uiþ1;j�2 þ 2ui;j�1 � 2uiþ1;j�1Þ

ð2:39Þ
S3 gives:
uxx;i;j ¼
1

38
ð�11ui�2;j þ 82ui�1;j � 71ui;j þ 60vi;jÞ

uyy;i;j ¼
1

38
ð�71ui;j þ 82ui;jþ1 � 11ui;jþ2 � 60wi;jÞ

uxy;i;j ¼
1

2
ð�ui�2;j þ 5ui�1;j � 4ui;j þ ui�2;jþ1 � 6ui�1;jþ1 þ 5ui;jþ1 þ ui�1;jþ2 � ui;jþ2Þ

uxxx;i;j ¼ �
5

19
ðui�2;j � 4ui�1;j þ 3ui;j � 2vi;jÞ

uyyy;i;j ¼
5

19
ð3ui;j � 4ui;jþ1 þ ui;jþ2 þ 2wi;jÞ

uxxy;i;j ¼
1

2
ð�ui�2;j þ 2ui�1;j � ui;j þ ui�2;jþ1 � 2ui�1;jþ1 þ ui;jþ1Þ

uxyy;i;j ¼
1

2
ð�ui�1;j þ ui;j þ 2ui�1;jþ1 � 2ui;jþ1 � ui�1;jþ2 þ ui;jþ2Þ

ð2:40Þ
S4 gives:
uxx;i;j ¼
1

38
ð�71ui;j þ 82uiþ1;j � 11uiþ2;j � 60vi;jÞ

uyy;i;j ¼
1

38
ð�71ui;j þ 82ui;jþ1 � 11ui;jþ2 � 60wi;jÞ

uxy;i;j ¼
1

2
ð4ui;j � 5uiþ1;j þ uiþ2;j � 5ui;jþ1 þ 6uiþ1;jþ1 � uiþ2;jþ1 þ ui;jþ2 � uiþ1;jþ2Þ
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uxxx;i;j ¼
5

19
ð3ui;j � 4uiþ1;j þ uiþ2;j þ 2vi;jÞ

uyyy;i;j ¼
5

19
ð3ui;j � 4ui;jþ1 þ ui;jþ2 þ 2wi;jÞ

uxxy;i;j ¼
1

2
ð�ui;j þ 2uiþ1;j � uiþ2;j þ ui;jþ1 � 2uiþ1;jþ1 þ uiþ2;jþ1Þ

uxyy;i;j ¼
1

2
ð�ui;j þ uiþ1;j þ 2ui;jþ1 � 2uiþ1;jþ1 � ui;jþ2 þ uiþ1;jþ2Þ ð2:41Þ
S5 gives:
uxx;i;j ¼
1

2
ðui�1;j � 2ui;j þ uiþ1;jÞ

uyy;i;j ¼
1

76
ð�11ui�1;j � 120ui;j � 11uiþ1;j � 11ui�1;j�2 � 11uiþ1;j�2

þ 22ui�1;j�1 þ 120ui;j�1 þ 22uiþ1;j�1 þ 120wi;jÞ

uxy;i;j ¼
1

4
ð�3ui�1;j þ 3uiþ1;j � ui�1;j�2 þ uiþ1;j�2 þ 4ui�1;j�1 � 4uiþ1;j�1Þ

uxxx;i;j ¼ �
5

11
ðui�1;j � uiþ1;j þ 2vi;jÞ

uyyy;i;j ¼ �
5

38
ðui�1;j þ 4ui;j þ uiþ1;j þ ui�1;j�2 þ uiþ1;j�2 � 2ui�1;j�1 � 4ui;j�1 � 2uiþ1;j�1 � 4wi;jÞ

uxxy;i;j ¼
1

2
ðui�1;j � 2ui;j þ uiþ1;j � ui�1;j�1 þ 2ui;j�1 � uiþ1;j�1Þ

uxyy;i;j ¼
1

4
ð�ui�1;j þ uiþ1;j � ui�1;j�2 þ uiþ1;j�2 þ 2ui�1;j�1 � 2uiþ1;j�1Þ

ð2:42Þ
S6 gives:
uxx;i;j ¼
1

76
ð�11uiþ2;j�1 � 120ui;j þ 120uiþ1;j � 11ui;jþ1

þ 22uiþ1;jþ1 � 11uiþ2;jþ1 � 11ui;j�1 þ 22uiþ1;j�1 � 120vi;jÞ

uyy;i;j ¼
1

2
ð�2ui;j þ ui;jþ1 þ ui;j�1Þ

uxy;i;j ¼
1

4
ðuiþ2;j�1 � 3ui;jþ1 þ 4uiþ1;jþ1 � uiþ2;jþ1 þ 3ui;j�1 � 4uiþ1;j�1Þ

uxxx;i;j ¼
5

38
ðuiþ2;j�1 þ 4ui;j � 4uiþ1;j þ ui;jþ1 � 2uiþ1;jþ1 þ uiþ2;jþ1 þ ui;j�1 � 2uiþ1;j�1 þ 4vi;jÞ

uyyy;i;j ¼
5

11
ðui;jþ1 � ui;j�1 � 2wi;jÞ

uxxy;i;j ¼
1

4
ð�uiþ2;j�1 þ ui;jþ1 � 2uiþ1;jþ1 þ uiþ2;jþ1 � ui;j�1 þ 2uiþ1;j�1Þ

uxyy;i;j ¼
1

2
ð2ui;j � 2uiþ1;j � ui;jþ1 þ uiþ1;jþ1 � ui;j�1 þ uiþ1;j�1Þ

ð2:43Þ
S7 gives:
uxx;i;j ¼
1

2
ðui�1;j � 2ui;j þ uiþ1;jÞ

uyy;i;j ¼
1

76
ð�11ui�1;j � 120ui;j � 11uiþ1;j þ 22ui�1;jþ1 þ 120ui;jþ1 þ 22uiþ1;jþ1

� 11ui�1;jþ2 � 11uiþ1;jþ2 � 120wi;jÞ

uxy;i;j ¼
1

4
ð3ui�1;j � 3uiþ1;j � 4ui�1;jþ1 þ 4uiþ1;jþ1 þ ui�1;jþ2 � uiþ1;jþ2Þ
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uxxx;i;j ¼ �
5

11
ðui�1;j � uiþ1;j þ 2vi;jÞ

uyyy;i;j ¼
5

38
ðui�1;j þ 4ui;j þ uiþ1;j � 2ui�1;jþ1 � 4ui;jþ1 � 2uiþ1;jþ1 þ ui�1;jþ2 þ uiþ1;jþ2 þ 4wi;jÞ

uxxy;i;j ¼
1

2
ð�ui�1;j þ 2ui;j � uiþ1;j þ ui�1;jþ1 � 2ui;jþ1 þ uiþ1;jþ1Þ

uxyy;i;j ¼
1

4
ð�ui�1;j þ uiþ1;j þ 2ui�1;jþ1 � 2uiþ1;jþ1 � ui�1;jþ2 þ uiþ1;jþ2Þ ð2:44Þ
S8 gives:
uxx;i;j¼
1

76
ð120ui�1;j�120ui;j�11ui�2;jþ1þ22ui�1;jþ1�11ui;jþ1�11ui�2;j�1þ22ui�1;j�1�11ui;j�1þ120vi;jÞ

uyy;i;j¼
1

2
ð�2ui;jþui;jþ1þui;j�1Þ

uxy;i;j¼
1

4
ðui�2;jþ1�4ui�1;jþ1þ3ui;jþ1�ui�2;j�1þ4ui�1;j�1�3ui;j�1Þ

uxxx;i;j¼
5

38
ð4ui�1;j�4ui;j�ui�2;jþ1þ2ui�1;jþ1�ui;jþ1�ui�2;j�1þ2ui�1;j�1�ui;j�1þ4vi;jÞ

uyyy;i;j¼
5

11
ðui;jþ1�ui;j�1�2wi;jÞ

uxxy;i;j¼
1

4
ðui�2;jþ1�2ui�1;jþ1þui;jþ1�ui�2;j�1þ2ui�1;j�1�ui;j�1Þ

uxyy;i;j¼
1

2
ð2ui�1;j�2ui;j�ui�1;jþ1þui;jþ1�ui�1;j�1þui;j�1Þ

ð2:45Þ

As in the previous sub-section, we assign equal optimal weights to all the stencils. The smoothness measures

that we use for limiting uxy,i,j are given by Eq. (2.36), this time applied to the polynomials that we have con-
structed in this section. The smoothness measures that we use for limiting uxxy,i,j and uxyy,i,j are given by:
b ¼
Z Z

½�1=2;1=2��½�1=2;1=2�

o3uðx; y; tÞ
ox3

� �2

þ o3uðx; y; tÞ
oy3

� �2

þ o3uðx; y; tÞ
ox2oy

� �2

þ o3uðx; y; tÞ
oxoy2

� �2
" #

dxdy

ð2:46Þ
This completes our description of the reconstruction of cross-terms for the fourth order hybrid
RKDG+HWENO scheme.

3. A sub-cell based algorithm for flagging troubled zones

Both RKDG and hybrid RKDG-HWENO schemes really do not need a lot of limiting. For smooth por-
tions of the flow the schemes are very stable and the higher moments do not need any limiting. Some practi-
tioners have even reported that they have successfully solved problems with mild shocks by using RKDG
schemes without any resort to limiting. However, for most problems with strong shocks, some amount of lim-
iting is indeed needed. The MP limiter which we develop here follows the philosophy of Suresh and Huynh [29]
but is a little different in details. It permits a monotonicity property to be applied in a controlled way and does
not clip all local extrema, as would a TVD limiter. It parametrizes the amount of solution-dependent curva-
ture we permit in a bonafide local extremum and the rapidity with which this curvature may vary. Both these
features are very desirable when it comes to preserving some forms of local extrema, especially when used with
RKDG schemes that do not seem to need as much limiting as comparable TVD schemes.

It is important to realize two important features associated with local extrema in RKDG schemes: (1) The
higher order RKDG schemes can retain meaningful sub-cell structure that may not need to be limited. (2) It is
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also important to realize that spurious extrema in second order finite volume schemes with piecewise-linear
slopes only show up at the zone boundaries. In contrast, when dealing with higher order RKDG schemes
we have to realize that such spurious extrema will not necessarily show up only at a zone boundary but
may also manifest themselves within the interior of a zone. Applying any form of discontinuity detector at
just the zone boundary, as is done by Biswas et al. [5] and Burbeau et al. [6], would fail to distinguish between
the two types of extrema catalogued earlier in this paragraph. A higher order scheme that retains higher
moments simply forces us to take a sub-cell based approach to limiting. The schemes presented in this paper
have all been formulated in a modal basis set. We observe though that a nodal formulation of RKDG schemes
makes it even easier to see the need for a sub-cell based limiting strategy.

The number of sub-cells that each zone should be divided into is not rigidly determined but should be suf-
ficient to distinguish between the different types of extrema that may form. The number of sub-cells used will
not determine the cost of the scheme because all limiters for higher order schemes operate in characteristic
variables and the cost of building eigenvectors and projecting the solution and its moments into characteristic
variables far outweighs the cost of taking a sub-cell approach. As a practical matter, we do not divide the
piecewise linear representation of second order RKDG schemes into sub-cells at all because we know from
the above discussion that the extrema will show up at the zone boundaries. For third order schemes, which
retain piecewise parabolic data, we subdivide each zone into three sub-cells of equal size and apply the mod-
ified MP algorithm within each of them. For fourth order schemes, which retain piecewise cubic data, we sub-
divide each zone into four sub-cells of equal size and apply the modified MP algorithm within each of them.
The entire zone being considered is flagged as a troubled zone if the MP algorithm finds that the upwinded
boundary of any sub-cell lies outside the monotonicity preserving limits given by the MP algorithm at that
boundary. The MP algorithm also requires two more sub-cells on either side of the sub-cell to which it is
applied. As a result, for the second order schemes the MP algorithm requires us to project the zone averages
from the two neighboring zones to the left and right into the characteristic space of the zone being considered.
For third and higher order schemes, the MP algorithm only requires us to project all the moments from each
of the neighboring zones to the immediate left and right of the zone being considered into the characteristic
space of that zone. Using all these moments we can build sub-cell averaged characteristic variables for all the
sub-cells within each zone as well as in the two sub-cells to the right and left of the zone being considered. Thus
say that �wj is a sub-cell averaged characteristic variable in sub-cell ‘‘j’’ that is being considered. To apply the
MP algorithm we need �wj�2, �wj�1, �wj, �wjþ1 and �wjþ2. If the waves associated with this characteristic variable are
flowing to the right within the zone being considered then we also need wj+1/2 which is easily available because
in RKDG schemes the solution is available at any point within the zone.

Our first step is to apply a very coarse test. Thus we form a TVD bound using the interval I ½�wj;wTVD
jþ1=2� where

wTVD
jþ1=2 is a TVD limiter-based representation of the characteristic variable ‘‘w’’ at the sub-cell boundary ‘‘j + 1/2’’.

If wj+1/2 lies within the interval I ½�wj;wTVD
jþ1=2�we forgo any further MP construction and say that the sub-cell ‘‘j’’ is

trouble-free. wTVD
jþ1=2 is constructed using a modification of van Leer’s MC limiter as follows:
wTVD
jþ1=2 ¼ �wj þ 0:5MCb Limiter½�wjþ1 � �wj; �wj � �wj�1� ð3:1Þ
where
MCb Limiter½a; b� ¼ sgnðaÞminð0:5jaþ bj; bjaj; bjbjÞ if ab > 0

¼ 0 otherwise
ð3:2Þ
Setting b 2 [1,2] in the MCb_Limiter produces a TVD limiter, with b = 1 being the non-compressive minmod
limiter and b = 2 being the maximally compressive MC limiter. The inclusion of b in Eq. (3.2) allows us to pick
all limiters between these two extremes.

If the sub-zone does not pass the above coarse test then we go through the MP limiter. The MP algorithm
consists of realizing that the TVD condition only requires wj+1/2 to lie within the intersection of the intervals
I ½�wj; �wjþ1� and I ½�wj;wUL

jþ1=2� where:
wUL
jþ1=2 ¼ �wj þ að�wj � �wj�1Þ ð3:3Þ
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Here all values a 2 [0.5,1.0] will yield a TVD scheme that will function well with a CFL condition that is less
than or equal to 0.5. To make allowance for local extrema we need to include curvatures into the above equa-
tions and we do that next. We first construct curvatures dj and dj+1 as follows:
dj ¼ �wjþ1 � 2�wj þ �wj�1; djþ1 ¼ �wjþ2 � 2�wjþ1 þ �wj ð3:4Þ

We then use these curvatures to approximate a curvature at the ‘‘j + 1/2’’ sub-cell boundary as follows:
djþ1=2 ¼ sminmodðjdj � djþ1; jdjþ1 � dj; dj; djþ1Þ ð3:5Þ
The ratio j in Eq. (3.5) ensures that the curvature dj+1/2 is zeroed out when the ratio of curvatures dj+1/dj lies
outside the range [1/j,j], i.e. when the curvature varies rapidly from one sub-cell to the next. The variable s in
Eq. (3.5) should be set greater than or equal to unity, where values larger than unity provide space for addi-
tional curvature to develop provided the curvatures do not fluctuate too rapidly from one sub-cell to the next.
Using an equation that is entirely analogous to Eq. (3.5) we also construct the curvature dj�1/2. Having con-
structed the curvature at the ‘‘j + 1/2’’ sub-cell boundary we wish to find a parabola with the following three
conditions: (a) its sub-cell averaged value in sub-cell ‘‘j’’ is �wj, (b) its sub-cell averaged value in sub-cell ‘‘j + 1’’
is �wjþ1 and (c) its curvature is dj+1/2. The value of such a parabola at the ‘‘j + 1/2’’ sub-cell boundary is given
by:
wMD
jþ1=2 ¼

1

2
ð�wj þ �wjþ1Þ �

1

3
djþ1=2 ð3:6Þ
We also want to find a parabola with the following three conditions: (a) its sub-cell averaged value in sub-cell
‘‘j’’ is �wj, (b) its sub-cell averaged value in sub-cell ‘‘j � 1’’ is �wj�1 and (c) its curvature is dj�1/2. The value of
such a parabola at the ‘‘j + 1/2’’ sub-cell boundary is given by:
wLC
jþ1=2 ¼ �wj þ

1

2
ð�wj � �wj�1Þ þ

2

3
dj�1=2 ð3:7Þ
The parabolic values built up in Eqs. (3.6) and (3.7) are used to enhance the intervals mentioned above so that
we now seek the intersection of the intervals I ½�wj; �wjþ1;wMD

jþ1=2� and I ½�wj;wUL
jþ1=2;w

LC
jþ1=2�. By including the para-

bolic profiles we make allowance for well-formed extrema. The intersection is given by the interval
I ½wmin

jþ1=2;w
max
jþ1=2� where:
wmin
jþ1=2 ¼ max½minð�wj; �wjþ1;wMD

jþ1=2Þ;minð�wj;wUL
jþ1=2;w

LC
jþ1=2Þ� ð3:8Þ
and
wmin
jþ1=2 ¼ min½maxð�wj; �wjþ1;wMD

jþ1=2Þ;maxð�wj;wUL
jþ1=2;w

LC
jþ1=2Þ� ð3:9Þ
A sub-cell is said to satisfy the MP constraint if wj+1/2 lies within the interval I ½wmin
jþ1=2;w

max
jþ1=2�. A zone is said

to be free of trouble if all its sub-cells ‘‘j’’ satisfy the MP constraint. Zones that are not free of trouble are said
to be troubled zones and the appropriate WENO scheme is used to construct the slope, as shown in Qiu and
Shu [21]. The second and higher moments can be constructed using the formulation in Sections 2.2.1 and 2.2.2.

For typical problems associated with the Euler equations we use the following values for the free param-
eters defined in this section. The values change for differing RKDG schemes and the preferred values for Euler
flows, obtained after extensive testing, are given below:
p ¼ 1 RKDG : b ¼ 1:3; a ¼ 0:7; j ¼ 4:0; s ¼ 1:3:

p ¼ 2 RKDG : b ¼ 1:3; a ¼ 0:7; j ¼ 4:0; s ¼ 1:3:

p ¼ 3 RKDG : b ¼ 1:1; a ¼ 0:6; j ¼ 3:0; s ¼ 1:1:

Hybrid RKDGþWENO : b ¼ 1:3; a ¼ 0:8; j ¼ 4:0; s ¼ 1:3:

ð3:10Þ
For Hybrid RKDG+WENO schemes we take each zone to be a sub-cell, just as we do for p = 1 RKDG. This
is so because we only have the variable and its first moment in that case. The parameters given above were
optimized for use with the (local) Lax–Friedrichs flux, which we use all through this work. The above choice
of parameters represents conservatively defined sets of choices. For many Euler flow problems the parameters
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can assume much larger values. Even with the conservatively defined choices for the parameters given above,
we find the flagging to be minimal on most applications including ones with very strong shocks, as will be
shown in the subsequent section. The conservatively defined choices for the parameters given above still pro-
vide enough space to ensure that most of the accuracy tests with smooth solutions run through without trig-
gering any flagging at all, as will be shown in the next section. This completes our description of the sub-cell
based algorithm for flagging troubled zones.

We make several observations below:

(1) Eqs. (3.5)–(3.7) are different from the corresponding ones in Suresh and Huynh [29]. They are more con-
sistent with the volume-averaged approach that we use in the sub-cells.

(2) Notice that the flagging algorithm described here does not increase the stencil by too many zones on
either side. For second order schemes it only increases the stencil by two zones on either side. For
RKDG schemes that are of third and higher orders the present flagging algorithm only increases the
stencil by one zone on either side.

(3) The major cost of the current algorithm is the cost of producing the eigenvectors and projecting all the
moments of the current zone and its neighbors into characteristic variables. This is a fixed cost that can-
not be avoided for all higher order schemes because limiting strategies do not seem to work well when
applied to primitive or conserved variables. The cost of the sub-cell flagging algorithm as well as the
WENO reconstruction in flagged zones is modest. Likewise, the cost of transforming the moments in
the flagged zones back to characteristic variables is indeed modest by comparison. Thus the present algo-
rithm is cost-competitive with any other that carries out limiting in characteristic variables.

(4) The present algorithm is capable of identifying trouble in individual characteristic fields within a zone.
Unlike Qiu and Shu [21,22] we did not see the worth of using WENO or HWENO to reconstruct all the
characteristic fields in zones that are flagged. Instead we only used WENO or HWENO to reconstruct
the troubled characteristic fields. This permits us to preserve more information about the solution.

(5) Balsara [4] has found that the MHD system seems to need a somewhat more restrictive limiting than the
Euler system. The present MP algorithm, with its adjustable parameters, provides that flexibility.

(6) When formulating RKDG schemes for unstructured meshes, it is more natural to use a nodal basis set.
Since nodal basis sets make it easier to motivate a sub-cell based algorithm for detecting troubled zones,
it may prove easy to extend this algorithm to unstructured meshes.

(7) The present strategy might also prove useful for residual distribution schemes that have sub-structure
within each zone.

4. Accuracy analysis

We present an accuracy analysis for the RKDG and hybrid RKDG+HWENO schemes described in this
paper. In all instances the local Lax–Friedrichs flux was used. The Courant numbers were set to be 0.9 times
the maximum permissible values from Cockburn et al. [11]. For each test problem the spatial and temporal
accuracy were kept the same. For all tests the MP algorithm used the settings that we have found to be ben-
eficial for the Euler equations. All the problems used in this section involve smooth solutions. Thus we present
the accuracy analysis with the limiter and the flagging strategy described in the previous section and also the
same accuracy analysis without any WENO limiting. If the detector for troubled zones operated optimally, it
should not flag any zones as troubled. In that case the accuracy should be the same with and without the flag-
ging algorithm. In practice, some of the more stringent test problems do trigger flagging in some zones. In that
case, the WENO algorithm is invoked to limit the first and higher moments in that zone. As a result the solu-
tions with limiting will be less accurate than the ones without. We should, nevertheless, expect to see the same
formal order of accuracy. We have also advanced the viewpoint that higher moments can be reconstructed
without substantial loss of accuracy for the hybrid RKDG+HWENO schemes. Thus we expect the hybrid
RKDG+HWENO schemes to meet their design orders of accuracy. Moreover, on large enough meshes we
might expect the hybrid RKDG+HWENO schemes to have intrinsic accuracies that are in the same range
as the intrinsic accuracies of the corresponding RKDG schemes.
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We also point out that the first three accuracy analyses have also been done for WENO schemes in Balsara
and Shu [2]. As a general observation we find that for most of the cases considered here the RKDG schemes
start out by having intrinsically better accuracy on smaller meshes. Thus while WENO schemes have higher
formal order of accuracy, the RKDG schemes have better resolution on smaller meshes. The present obser-
vation led Torrilhon and Balsara [32] to conclude that RKDG schemes might have some advantages over
WENO schemes in overcoming the pseudo-convergence that is observed in the MHD system.

The problems in this and the next section were all run with the (local) Lax–Friedrichs flux function. Flag-
ging of troubled zones was done with the sub-cell based MP algorithm using the parameters given in Eq. (3.10)
in all cases, except when noted otherwise. In all instances we were able to run all the test problems with Cou-
rant numbers that were set to be 0.9 times the maximum permissible values from Cockburn et al. [11]. The
temporal accuracy in the Runge–Kutta time-update was set to have the same order as the spatial order of
accuracy for the scheme. Here we take ðq; v; pÞ to be the density, velocity and pressure variables in the Euler
equations.

4.1. First test with advection equation

We solve the advection equation, ut + ux = 0, with initial condition u(x, 0) = sin(2px) on the domain
[�0.5, 0.5]. Periodic boundary conditions were used and the simulation was stopped at a time of 0.5. The accu-
racy analysis is given in Table 1. The sinusoidal function is very smooth. As a result, we see that the solution
with the limiter has the same value as the solution without the limiter in all instances, showing us that the
zones were never flagged as troubled. This is the desired result, indicating that our flagging algorithm is sophis-
ticated enough to realize that for this problem there are no troubled zones. We also notice that the hybrid
RKDG+HWENO schemes have intrinsic accuracies that are in the same range as the intrinsic accuracies
of the corresponding RKDG schemes, indicating that our strategy for reconstructing the higher moments
is indeed an effective one for very smooth flows.
Table 1
Advection equation ut + ux = 0 with u(x, 0) = sin(2px) profile

N DG or DG+HWENO with WENO Limiter DG or DG+HWENO without Limiter

L1 err Order L1 err Order L1 err Order L1 err Order

p1-RKDG 10 1.51e�2 2.34e�2 1.51e�2 2.34e�2
20 3.29e�3 2.20 5.19e�3 2.17 3.29e�3 2.20 5.19e�3 2.17
40 7.76e�4 2.08 1.22e�3 2.09 7.76e�4 2.08 1.22e�3 2.09
80 1.89e�4 2.04 2.97e�4 2.04 1.89e�4 2.04 2.97e�4 2.04

p2-RKDG 10 1.58e�4 2.44e�4 1.58e�4 2.44e�4
20 1.79e�5 3.14 2.80e�5 3.13 1.79e�5 3.14 2.80e�5 3.13
40 2.16e�6 3.05 3.40e�6 3.04 2.16e�6 3.05 3.40e�6 3.04
80 2.68e�7 3.01 4.22e�7 3.01 2.68e�6 3.01 4.22e�7 3.01

p3-RKDG 10 8.97e�7 1.38e�6 8.97e�7 1.38e�6
20 4.58e�8 4.29 7.16e�8 4.27 4.58e�8 4.29 7.16e�8 4.27
40 2.93e�9 3.97 4.59e�9 3.96 2.93e�9 3.97 4.59e�9 3.96
80 1.83e�10 3.99 2.88e�10 3.99 1.83e�10 3.99 2.88e�10 3.99

p2-RKDG+HWENO 10 1.06e�3 2.07e�3 1.06e�3 2.07e�3
20 3.51e�5 4.92 6.54e�5 4.98 3.51e�5 4.92 6.54e�5 4.98
40 2.58e�6 3.76 4.09e�6 4.00 2.58e�6 3.76 4.09e�6 4.00
80 2.65e�7 3.29 4.17e�7 3.29 2.65e�7 3.29 4.17e�7 3.29

p3-RKDG+HWENO 10 2.10e�4 4.37e�4 2.10e�4 4.37e�4
20 2.61e�6 6.33 6.09e�6 6.17 2.61e�6 6.33 6.09e�6 6.17
40 4.85e�8 5.75 1.48e�7 5.35 4.85e�8 5.75 1.48e�7 5.35
80 1.13e�9 5.41 4.04e�9 5.20 1.13e�9 5.41 4.04e�9 5.20

The problem was run on the domain [�0.5,0.5] with periodic boundaries and stopped at a time of 0.5. Comparing DG with and without
limiter. The MP detection algorithm with the settings for Euler equations was used.
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4.2. Second test with advection equation

We solve the advection equation, ut + ux = 0, with initial condition u(x, 0) = sin4(2px) on the domain
[�0.5,0.5]. Periodic boundary conditions were used and the simulation was stopped at a time of 0.5. The accu-
racy analysis is given in Table 2. The present initial conditions have a very rapidly varying curvature. As a
result, we expect that there will be instances where the flagging algorithm will falsely flag zones as being trou-
bled. Thus we see that on some of the smaller meshes the solution with the limiter has accuracy that differs
from the accuracy of the solution without the limiter. We do, however, expect that as the mesh is refined fewer
zones will be flagged as troubled. Table 2 shows us that this is indeed the case. Thus on larger meshes we find
that the accuracy of the solution with the limiter becomes comparable to the accuracy of the solution without
the limiter. In all instances we see that the schemes meet their design orders of accuracy. On the larger meshes
we also observe that the p = 2 RKDG+HWENO scheme has accuracy that is almost the same as the corre-
sponding p = 2 RKDG scheme. This shows that our strategy of reconstructing the second moments was an
effective one. The p = 3 RKDG+HWENO scheme reconstructs the second and third moments. On large
meshes we see that it is less accurate than the p = 3 RKDG scheme by a couple of orders of magnitude. Thus,
because a larger number of moments are reconstructed in the p = 3 RKDG+HWENO scheme, the p = 3
RKDG scheme retains an advantage over the p = 3 RKDG+HWENO scheme. Both schemes do, however,
meet their designed order of accuracy.

4.3. Burgers equation test

We solve the non-linear scalar Burgers equation, ut + u ux = 0, with initial condition u(x, 0) =
0.25 + 0.5sin(2px) on the domain [�0.5,0.5]. Periodic boundary conditions were used and the simulation
was stopped at a time of 0.5/p which corresponds to a time before any shocks form. The accuracy analysis
is given in Table 3. The initial condition is very smooth. As a result, we see that the solution with the limiter
Table 2
Advection equation ut + ux = 0 with u(x,0) = sin4(2px) profile

N DG or DG+HWENO with WENO Limiter DG or DG+HWENO without Limiter

L1 err Order L1 err Order L1 err Order L1 err Order

p1-RKDG 40 9.39e�3 1.73e�2 7.17e�3 1.43e�2
80 1.67e�3 2.48 3.49e�3 2.31 1.67e�3 2.48 3.49e�3 2.31
160 4.02e�4 2.06 8.09e�4 2.11 4.02e�4 2.06 8.09e�4 2.11
320 9.91e�5 2.02 2.00e�4 2.01 9.91e�5 2.02 2.00e�4 2.01

p2-RKDG 40 5.05e�4 2.44e�3 8.11e�5 1.52e�4
80 3.45e�5 3.87 2.35e�4 3.38 9.08e�6 3.16 1.74e�5 3.13
160 1.88e�6 4.19 1.71e�5 3.78 1.10e�6 3.04 2.13e�6 3.03
320 1.51e�7 3.65 1.02e�6 4.06 1.37e�7 3.01 2.64e�7 3.01

p3-RKDG 40 2.14e�4 1.44e�3 3.65e�7 6.19e�7
80 1.07e�5 4.32 1.56e�4 3.21 2.34e�8 3.96 3.99e�8 3.96
160 4.76e�7 4.49 1.09e�5 3.84 1.47e�9 3.99 2.51e�9 3.99
320 9.23e�11 12.33 1.57e�10 16.07 9.23e�11 4.00 1.57e�10 4.00

p2-RKDG+HWENO 40 5.14e�4 1.22e�3 4.89e�4 1.05e�3
80 3.41e�5 3.91 1.21e�4 3.34 3.32e�5 3.89 1.34e�4 2.97
160 2.42e�6 3.82 1.36e�5 3.15 2.39e�6 3.79 1.49e�5 3.16
320 1.96e�7 3.62 1.46e�6 3.22 1.97e�7 3.60 1.57e�6 3.24

p3-RKDG+HWENO 40 3.04e�4 1.47e�3 1.84e 7.35e�4
80 1.45e�5 4.39 1.41e�4 3.38 1.00e�5 4.19 6.81e�5 3.43
160 6.99e�7 4.38 9.12e�6 3.95 5.32e�7 4.24 4.99e�6 3.77
320 2.79e�8 4.65 5.71e�7 3.99 2.36e�8 4.49 4.95e�7 3.33

The problem was run on the domain [�0.5,0.5] with periodic boundaries and stopped at a time of 0.5. Comparing DG with and without
limiter. The MP detection algorithm with the settings for Euler equations was used.



Table 3
Burgers equation ut + u ux = 0 with u(x, 0) = 0.25 + 0.5sin(2px) profile

N DG or DG+HWENO with WENO Limiter DG or DG+HWENO without Limiter

L1 err Order L1 err Order L1 err Order L1 err Order

p1-RKDG 10 7.40e�4 4.08e�3 4.34e�4 1.82e�3
20 9.17e�5 3.01 4.42e�4 3.20 9.17e�5 2.24 4.42e�4 2.04
40 1.96e�5 2.22 1.12e�4 1.98 1.96e�5 2.22 1.12e�4 1.98
80 4.45e�6 2.14 2.90e�5 1.95 4.45e�6 2.14 2.90e�5 1.95

p2-RKDG 10 1.82e�5 1.26e�4 1.82e�5 1.26e�4
20 1.44e�6 3.65 8.57e�6 3.88 1.44e�6 3.65 8.57e�6 3.88
40 1.10e�7 3.72 6.28e�7 3.77 1.10e�7 3.72 6.28e�7 3.77
80 1.00e�8 3.46 6.09e�8 3.37 1.00e�8 3.46 6.09e�8 3.37

p3-RKDG 10 4.98e�7 4.05e�6 4.98e�7 4.05e�6
20 2.83e�8 4.14 3.45e�7 3.56 2.83e�8 4.14 3.45e�7 3.56
40 1.10e�9 4.68 2.96e�8 3.54 1.10e�9 4.68 2.96e�8 3.54
80 3.35e�11 5.04 1.64e�9 4.17 3.35e�11 5.04 1.64e�9 4.17

p2-RKDG+HWENO 10 3.25e�5 1.81e�4 3.25e�5 1.81e�4
20 3.23e�6 3.33 3.09e�5 2.55 3.23e�6 3.33 3.09e�5 2.55
40 2.64e�7 3.61 2.49e�6 3.63 2.64e�7 3.61 2.49e�6 3.63
80 2.17e�8 3.61 1.90e�7 3.71 2.17e�8 3.61 1.90e�7 3.71

p3-RKDG+HWENO 10 1.08e�5 9.98e�5 1.08e�5 9.98e�5
20 2.78e�7 5.29 3.49e�6 4.84 2.78e�7 5.29 3.49e�6 4.84
40 4.58e�9 5.92 5.26e�8 6.05 4.58e�9 5.92 5.26e�8 6.05
80 2.25e�10 4.35 3.39e�9 3.96 2.25e�10 4.35 3.39e�9 3.96

The problem was run on the domain [�0.5, 0.5] with periodic boundaries and stopped at a time of 0.5/p. Comparing DG with and without
limiter. The MP detection algorithm with the settings for Euler equations was used.
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has the same value as the solution without the limiter in all instances, showing us that the zones were never
flagged as troubled. We also notice that the hybrid RKDG+HWENO schemes have intrinsic accuracies that
are in the same range as the intrinsic accuracies of the corresponding RKDG schemes, indicating that our
strategy for reconstructing the higher moments is indeed an effective one for very smooth flows.

4.4. One-dimensional test with Euler equations

We solve the Euler equations with density profile q(x, 0) = 1.0 + 0.25sin(2px) and pressure and velocity set
to unity. The problem was run on the domain [�0.5,0.5] with periodic boundaries and stopped at a time of 1.0.
The results are shown in Table 4. Since the initial condition is very smooth, we see that the solution with the
limiter has the same value as the solution without the limiter in all instances. This shows us that the zones were
never flagged as troubled, indicating that our flagging algorithm is sophisticated enough to realize that for this
problem there are no troubled zones. On the larger meshes we also observe that the p = 2 RKDG+HWENO
scheme has accuracy that is almost the same as the corresponding p = 2 RKDG scheme. On large meshes we
see that the p = 3 RKDG+HWENO scheme is less accurate than the p = 3 RKDG scheme by a couple of
orders of magnitude. Thus as larger numbers of moments are reconstructed the p = 3 RKDG scheme retains
an advantage over the p = 3 RKDG+HWENO scheme for some test problems. Both schemes do, however,
meet their designed order of accuracy.

4.5. Multi-dimensional vortex test with Euler equations

The previous tests have shown that the methods developed in Section 3 are good at flagging troubled zones
and that the methods presented in Section 2.2 successfully reconstruct the moments when the zones are
flagged. We are now interested in examining the performance of the cross-terms developed in Section 2.3
on multi-dimensional problems. we analyze the propagation of a strong vortex at a supersonic Mach number.



Table 4
Euler equations with density profile q(x, 0) = 1.0 + 0.25sin(2px) and pressure and velocity set to unity

N DG or DG+HWENO with WENO Limiter DG or DG+HWENO without Limiter

L1 err Order L1 err Order L1 err Order L1 err Order

p1-RKDG 10 1.84e�3 3.11e�3 1.84e�3 3.11e�3
20 3.25e�4 2.50 5.23e�4 2.57 3.25e�4 2.50 5.23e�4 2.57
40 7.17e�5 2.18 1.17e�4 2.16 7.17e�5 2.18 1.17e�4 2.16
80 1.71e�5 2.07 2.75e�5 2.09 1.71e�5 2.07 2.75e�5 2.09

p2-RKDG 10 2.71e�5 4.72e�5 2.71e�5 4.72e�5
20 1.46e�6 4.21 2.65e�6 4.15 1.46e�6 4.21 2.65e�6 4.15
40 1.08e�7 3.76 1.84e�7 3.85 1.08e�7 3.76 1.84e�7 3.85
80 1.10e�8 3.30 1.78e�8 3.37 1.10e�8 3.30 1.78e�8 3.37

p3-RKDG 10 4.97e�8 9.03e�8 4.97e�8 9.03e�8
20 5.68e�10 6.45 9.57e�10 6.56 5.68e�10 6.45 9.57e�10 6.56
40 4.66e�11 3.61 7.35e�11 3.70 4.66e�11 3.61 7.35e�11 3.70
80 2.93e�12 3.99 4.70e�12 3.97 2.93e�12 3.99 4.70e�12 3.97

p2-RKDG+HWENO 10 5.43e�4 8.12e�4 5.43e�4 8.12e�4
20 1.47e�5 5.20 2.37e�5 5.10 1.47e�5 5.20 2.37e�5 5.10
40 8.69e�7 4.09 1.34e�6 4.15 8.69e�7 4.09 1.34e�6 4.15
80 5.32e�8 4.03 8.37e�8 4.00 5.32e�8 4.03 8.37e�8 4.00

p3-RKDG+HWENO 10 1.41e�4 2.35e�4 1.41e�4 2.35e�4
20 1.20e�6 6.87 3.34e�6 6.13 1.20e�6 6.87 3.34e�6 6.13
40 1.78e�8 6.07 8.10e�8 5.37 1.78e�8 6.07 8.10e�8 5.37
80 3.23e�10 5.78 2.09e�9 5.28 3.23e�10 5.78 2.09e�9 5.28

The problem was run on the domain [�0.5, 0.5] with periodic boundaries and stopped at a time of 1.0. Comparing DG with and without
limiter. The MP detection algorithm with the settings for Euler equations was used.
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The vortex propagates at 45� to the grid lines which gives ample opportunity for the effects of multi-dimen-
sional propagation to manifest themselves in this test problem. The problem is initialized on the two-dimen-
sional domain given by [�5,5] · [�5,5]. An unperturbed flow of the Euler equations with
(q,P,vx,vy) = (1, 1,1,1) and a ratio of specific heats given by c = 1.4 is initialized on the computational
domain. The temperature and entropy are defined as T = P/q and S = P/qc. The vortex is defined as a fluc-
tuation to this mean flow given by
ðdvx; dvyÞ ¼
e

2p
e0:5ð1�r2Þð�y; xÞ

dT ¼ �ðc� 1Þe2

8cp2
eð1�r2Þ; dS ¼ 0

ð4:1Þ
where r2 = x2 + y2 and the vortex strength e = 5. We utilize periodic boundary conditions. The accuracy was
evaluated at a time of 10.0 code units. Table 5 shows the results. The problem is run on mesh sizes ranging
from 10 · 10 to 160 · 160. On the smallest meshes a significant amount of limiting is triggered but we see that
asymptotically, the error with a limiter becomes comparable to the error without the limiter. This includes sit-
uations where limiting of the cross terms is triggered, showing that the limited cross terms do not cause any
degradation in the formal order of accuracy of the scheme. In Section 2.3 we showed that the limiting could be
accomplished either with a MinMod limiter or with the use of smoothness measures in a WENO-like fashion.
Table 5 shows the order of accuracy with either style of limiting applied to the cross-terms. We see that use of
the WENO-like, smoothness measure-based limiter produces slightly better accuracy, albeit at a substantially
increased computational cost. It is, however, satisfying to notice that both strategies for limiting the cross-
terms meet their design accuracy. We also see that the accuracy of the solution with a limiter begins to ap-
proach the accuracy of the solution without the limiter on 80 · 80 meshes. This is expected because as the
resolution increases, the limiter views the solution as more smoothly represented on the mesh and, therefore,
flags fewer zones for reconstruction.



Table 5
Euler equations for the multi-dimensional vortex problem catalogued in Section 4.5

N DG with WENO Limiter DG without Limiter

L1 err Order L1 err Order L1 err Order L1 err Order

p2-RKDG (minmod) 10 · 10 1.70e�0 3.47e�1 2.97e�1 5.43e�2
20 · 20 2.65e�1 2.68 3.69e�2 3.24 4.09e�2 2.86 1.22e�2 2.16
40 · 40 2.72e�2 3.30 4.29e�3 3.10 3.19e�3 3.68 7.90e�4 3.95
80 · 80 1.29e�3 4.40 3.04e�4 3.82 3.46e�4 3.20 9.29e�5 3.09

160 · 160 8.11e�5 3.99 2.77e�5 3.46 5.24e�5 2.72 1.41e�5 2.72

p3-RKDG (minmod) 10 · 10 1.58e�0 3.44e�1 1.17e�1 4.55e�2
20 · 20 2.06e�1 2.94 6.45e�2 2.42 5.07e�3 4.53 2.32e�3 4.30
40 · 40 1.39e�2 3.88 1.97e�3 5.03 1.89e�4 4.75 5.23e�5 5.47
80 · 80 1.54e�4 6.49 6.06e�5 5.02 7.83e�6 4.59 3.27e�6 4.00

160 · 160 1.27e�6 6.92 1.40e�6 5.44 3.71e�7 4.40 1.70e�7 4.27

p2-RKDG (smooth) 10 · 10 1.60e�0 3.37e�1 2.97e�1 5.43e�2
20 · 20 2.03e�1 2.98 2.62e�2 3.68 4.09e�2 2.86 1.22e�2 2.16
40 · 40 1.56e�2 3.70 2.95e�3 3.15 3.19e�3 3.68 7.90e�4 3.95
80 · 80 5.88e�4 4.73 3.13e�4 3.23 3.46e�4 3.20 9.29e�5 3.09

160 · 160 5.81e�5 3.34 1.88e�5 4.06 5.24e�5 2.72 1.41e�5 2.72

p3-RKDG (smooth) 10 · 10 1.48e�0 3.26e�1 1.17e�1 4.55e�2
20 · 20 1.59e�1 3.23 4.69e�2 2.80 5.07e�3 4.53 2.32e�3 4.30
40 · 40 1.19e�2 3.73 1.94e�3 4.60 1.89e�4 4.75 5.23e�5 5.47
80 · 80 8.65e�5 7.11 4.86e�5 5.32 7.83e�6 4.59 3.27e�6 4.00

160 · 160 2.53e�6 5.10 3.28e�6 3.89 3.71e�7 4.40 1.70e�7 4.27

The problem was run on the domain [�5,5] · [�5,5] with periodic boundaries and stopped at a time of 10.0. Comparing DG with and
without limiter. The MP detection algorithm with the settings for Euler equations was used. In Section 2.3 we showed that the cross-terms
can be limited using either a MinMod limiter or one that is based on constructing smoothness measures in a WENO-like fashion. Results
from both limiting strategies are shown.
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5. Test problems

In these tests we emphasize the third and fourth order schemes. The p = 1 RKDG scheme also works well
on these test problems but it produces results that are not so much better than a very, very good TVD scheme.
As a result, it is not shown here.

For each of the last three tests in this section we also provide a table that gives us the percentage of flagged
zones for each of the schemes tested as a function of increasing number of zones. We should expect that for the
same physical problem the percentage of flagged zones decreases with increasing number of zones. We will see
that the expectation is borne out in practically all cases. For RKDG schemes this implies that as the mesh is
refined, most of the zones will have moments from the more accurate RKDG formulation rather than the less
accurate WENO reconstruction. For hybrid RKDG+HWENO schemes this implies that the higher moments
will be reconstructed using the more accurate first moments from the more accurate RKDG formulation
rather than the less accurate WENO reconstruction. Thus we see that as the mesh is refined the intrinsic accu-
racy of the schemes presented here is closer to the intrinsic accuracy of the RKDG scheme. In some scientific
problems, such as the pseudo-convergence of MHD Riemann problems that was explored in Torrilhon and
Balsara [32], the intrinsic accuracy of the scheme is more important than its formal order of accuracy. For
this reason, Torrilhon and Balsara [32] concluded that RKDG schemes that respect the divergence-free
evolution of the magnetic field might have some special advantages for numerical MHD.

5.1. Advection test

Our first test problem consists of testing the behavior of the scheme on a rather stringent scalar advec-
tion test problem. It is the same test problem that was catalogued in Jiang and Shu [18]. Thus we solve the
problem
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ut þ ux ¼ 0 �1 < x < 1

uðx; 0Þ ¼ u0ðxÞ periodic
ð5:1Þ
with
u0ðxÞ ¼
1

6
½Gðx;/; z� dÞ þ Gðx;/; zþ dÞ þ 4Gðx;/; zÞ� � 0:8 6 x 6 �0:6

¼ 1 � 0:4 6 x 6 �0:2

¼ 1� j10ðx� 0:1Þj 0:0 6 x 6 0:2

¼ 1

6
½F ðx;w; a� dÞ þ F ðx;w; aþ dÞ þ 4F ðx;w; aÞ� 0:4 6 x 6 0:6

¼ 0 otherwise ð5:2Þ

Gðx;/; zÞ ¼ e�/ðx�zÞ2

F ðx;w; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� w2ðx� aÞ2; 0Þ

q
ð5:3Þ
The constants in Eqs. (5.2) and (5.3) are given by
a ¼ 0:5; z ¼ �0:7; d ¼ 0:005; w ¼ 10; / ¼ log 2

36
d2 ð5:4Þ
The problem has several shapes that are difficult to advect with fidelity. The shapes consist of: (1) a combina-
tion of Gaussians, (2) a square wave, (3) a sharply peaked triangle and (4) a half ellipse arranged initially from
left to right. The reasons that make it a stringent test problem are catalogued in Balsara and Shu [2]. The prob-
lem was initialized on a mesh of 200 zones. It was run for a simulation time of 20 which corresponds to 10
traversals around the mesh. In doing so, the features catalogued in Eqs. (5.2) and (5.3) were advected over
2000 mesh points.

Fig. 3a–d show the solutions obtained from the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and
p = 3 RKDG+HWENO schemes respectively. The reference solution is also shown as an overlaid solid line.
We see that the p = 2 RKDG and p = 2 RKDG+HWENO have done equally well in advecting the profile
without much distortion of the shape or clipping of extrema. Also notice that both these schemes are just third
order schemes. Nevertheless, on comparing the results from Fig. 3a and b to the result from the ninth order
accurate r = 5 WENO scheme from Balsara and Shu [2] we see that the results from p = 2 RKDG and p = 2
RKDG+HWENO are entirely competitive. Thus the third order accurate RKDG family of schemes have per-
formed just as well as a ninth order accurate WENO scheme. The advantage of the RKDG family of schemes
stems from their smaller stencil and their substantially lower dissipation on smaller meshes. Fig. 1c shows that
the fourth order accurate p = 3 RKDG and p = 3 RKDG+HWENO schemes perform even better than their
third order counterparts. Moreover, the p = 3 RKDG scheme clearly outperforms the ninth order accurate
r = 5 WENO scheme. We also see that the p = 3 RKDG scheme has a slight edge over the p = 3
RKDG+HWENO scheme, as expected. Note though that the r = 5 WENO scheme lends itself to easy mod-
ification so that we can include the artificial compression method (ACM) from Yang [34] to steepen the profile
of the square pulse. The RKDG algorithm has not been similarly modified in the currently available literature.

5.2. The Lax problem

The Lax Riemann problem consists of the following specification:
ðq; v; pÞ ¼ ð0:445; 0:698; 3:528Þ for � 0:5 6 x 6 0:0

¼ ð0:5; 0; 0:571Þ for 0:0 6 x 6 0:5
ð5:5Þ
The problem was run on a 200 zone mesh to a time of 1.3. Fig. 4a, b, c and d show the resulting density for the
p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3 RKDG+HWENO schemes respectively.
The reference solution is also shown as an overlaid solid line. Fig. 4e, f, g and h show the history of flagged
points in space–time for the above four schemes. All schemes show exceptional treatment of the contact



Fig. 3. Results for the advection test problem for the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3 RKDG+HWENO
schemes respectively. The reference solution is shown as a solid line. The problem was solved on a 200 zone mesh and the diamonds show
the solution from that mesh. The reference solution is shown as a solid line.
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discontinuity, owing to the fact that they are all better than second order and have small stencils. We also see
that the sub-cell based flagging algorithm has always been effective at detecting the shock and both ends of the
rarefaction fans. In some instances the contact discontinuity is also flagged. Fig. 4e–h also show us that the
maximal flagging occurs towards the end of the simulation. Table 6 provides the percentage of zones that were
flagged in the last timestep for each of the schemes tested as a function of increasing number of zones. We see
that, in keeping with our expectations, the percentage of flagged zones decreases as a function of increasing
number of zones.

5.3. The shock-entropy wave interaction problem

This problem was first presented in Shu and Osher [27]. A moving Mach 3 shock is made to interact with a
sinusoidal density fluctuation. The initial conditions are given by:



Fig. 4. Results for the Lax test problem for the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3 RKDG+HWENO
schemes respectively. The reference solution is shown as a solid line. The problem was solved on a 200 zone mesh and the diamonds show
the solution from that mesh. Fig. 4e, f, g and h show the history of flagged points in space–time for the above four schemes.
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ðq; v; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ for � 5 6 x 6 �4

¼ ð1þ 0:2 sinð5xÞ; 0; 1Þ for � 4 6 x 6 5
ð5:6Þ
The problem provides an example of the interaction of a shock with a smooth flow having oscillations. The
simulation was run on a 200 zone mesh and stopped at a time of 1.8. Fig. 5a, b, c and d show the resulting
density for the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3 RKDG+HWENO schemes
respectively. The reference solution is also shown as an overlaid solid line. Fig. 5e, f, g and h show the history
of flagged points in space–time for the above four schemes. We see that the density profile from the p = 2
RKDG scheme is very marginally better than the p = 2 RKDG+HWENO, but that is strongly dependent
on the choice of parameters in the sub-cell based algorithm for detecting troubled zones. The p = 3 RKDG
and p = 3 RKDG+HWENO schemes perform comparably well. In all cases the post-shock oscillations are
well resolved, showing that our algorithm does not unduly destroy structures. Fig. 5e through h show that



Fig. 4 (continued)

Table 6
Percentage of zones that were flagged in the final time step of the Lax problem for meshes with increasing number of zones

p = 2 RKDG p = 2 RKDG+HWENO p = 3 RKDG p = 3 RKDG+HWENO

200 9.16 16.83 8.75 12.13
400 3.65 4.16 3.38 9.62
800 2.66 2.13 1.81 7.59
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the flagging algorithm has accurately detected the Mach 3 shock and also the smaller shocks that form behind
it. Fig. 5e to h also show us that the maximal flagging occurs towards the end of the simulation. Table 7 pro-
vides the percentage of zones that were flagged in the last timestep for each of the schemes tested as a function
of increasing number of zones. We see that, in keeping with our expectations, the percentage of flagged zones
decreases as a function of increasing number of zones.



Fig. 5. Results for the shock-entropy wave test problem for the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3
RKDG+HWENO schemes respectively. The reference solution is shown as a solid line. The problem was solved on a 200 zone mesh and
the diamonds show the solution from that mesh. Fig. 5e, f, g and h show the history of flagged points in space–time for the above four
schemes.
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5.4. Interaction of blast waves

The present problem was suggested by Woodward and Colella [33] and considers the interaction of blast
waves. The initial conditions are :
ðq; v; pÞ ¼ ð1; 0; 1000Þ for � 0:5 6 x 6 �0:4

¼ ð1; 0; 0:01Þ for � 0:4 6 x 6 0:4

¼ ð1; 0; 100Þ for 0:4 6 x 6 0:5

ð5:7Þ
Reflecting boundary conditions are used at both ends of the computational domain with 400 zones and the
problem was run to a time of 0.038. Fig. 6a, b, c and d show the resulting density for the p = 2 RKDG,



Fig. 5 (continued)

Table 7
Percentage of zones that were flagged in the final time step of the shock-entropy wave interaction problem for meshes with increasing
number of zones

p = 2 RKDG p = 2 RKDG+HWENO p = 3 RKDG p = 3 RKDG+HWENO

200 28.33 26.33 33.00 25.75
400 13.75 13.00 12.25 14.44
800 4.99 7.08 4.81 8.09
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p = 2 RKDG+HWENO, p = 3 RKDG and p = 3 RKDG+HWENO schemes respectively. Fig. 6e, f, g and h
show the history of flagged points in space–time for the above four schemes. All the schemes were run with the
parameters from Eq. (3.10) in the sub-cell based algorithm for detecting troubled zones with the exception of
the p = 3 RKDG+HWENO scheme. The latter was run with b = 1.1; a = 0.7; j = 3.0; s = 1.15. For just this



Fig. 6. Results for the blast wave interaction test problem for the p = 2 RKDG, p = 2 RKDG+HWENO, p = 3 RKDG and p = 3
RKDG+HWENO schemes respectively. The reference solution is shown as a solid line. The problem was solved on a 400 zone mesh and
the diamonds show the solution from that mesh. Fig. 6e, f, g and h show the history of flagged points in space–time for the above four
schemes.
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problem we preferred to use the third order accurate Runge–Kutta timestepping strategy for all the runs be-
cause of its good TVD preserving properties. We see that in all instances the density profile compares well with
the reference solution, which is shown with a solid line. The p = 2 RKDG and p = 2 RKDG+HWENO
schemes seem to require minimal amount of flagging and closely track the strong shocks. The p = 3 RKDG
scheme uses only slightly more flagging. Because of the reduced parameters in the flagging algorithm, we see
that the p = 3 RKDG+HWENO scheme produces a somewhat larger number of flagged points. Fig. 6e to h
also show us that the flagging that occurs towards the end of the simulation is representative of the amount of
flagging that occurs all through the run. Table 8 provides the percentage of zones that were flagged in the
last timestep for each of the schemes tested as a function of increasing number of zones. We see that, in keep-
ing with our expectations, the percentage of flagged zones decreases as a function of increasing number of
zones.



Fig. 6 (continued)

Table 8
Percentage of zones that were flagged in the final time step of the interacting blast waves problem for meshes with increasing number of
zones

p = 2 RKDG p = 2 RKDG+HWENO p = 3 RKDG p = 3 RKDG+HWENO

200 8.33 7.16 13.00 13.50
400 4.00 4.33 6.08 5.75
800 2.16 2.92 3.54 5.50
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5.5. Mach 3 wind tunnel with a forward-facing step

This problem has been proposed by Woodward and Colella [33]. It has been simulated by Cockburn and
Shu [10] with RKDG schemes showing the vortex sheet roll up that sets in with increasing resolution. Our
purpose is not to make such a resolution study but rather to validate the robust and accurate behavior of



Fig. 7. Density from the simulation of the Mach 3 forward-facing step problem with 240 · 80 zone resolution at a time of 4.0 for the p = 2
RKDG scheme.
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the schemes proposed here. For this reason we have simulated this test problem at the same resolution and
twice the resolution as Woodward and Colella [33]. The problem consists of a wind tunnel that is initialized
on a two-dimensional grid with rectangular zones that span the region [0,3] · [0,1]. A forward-facing step is
set up with the corner of the step at (0.6,0.2). The left boundary is initialized as an inflow boundary that has a
Mach 3 gas with density of 1.4 and unit pressure flowing in. The gas has a ratio of specific heats given by 1.4.
The right boundary is taken to be an outflow boundary. Reflective boundary conditions are applied to the
walls of the tunnel. We treated the singularity at the corner with the same technique that was suggested in
Woodward and Colella [33]. The problem was run with p = 2 and p = 3 RKDG schemes using the limiter
given here on grids of 240 · 80 till a simulation time of 4.0.

Fig. 7 shows the density from the simulation of the Mach 3 forward-facing step problem with 240 · 80 zone
resolution at a time of 4.0 for the p = 2 RKDG scheme. The problem was run with the troubled zone detection
strategy described in Section 3 and methods described in Section 2 were used to reconstruct the variables in
those zones. We see clearly that all shocks have sharp profiles and are well captured on the computing grids
that have been used. The vortex sheet that emanates from the Mach stem is properly resolved with just a few
zones across the vortex sheet.

6. Conclusions

We arrive at the following conclusions:

(1) An effective indicator of troubled zones in RKDG schemes should be based on a sub-cell algorithm for
detecting troubled zones. This is so because RKDG schemes can retain meaningful sub-cell structure
that does not need to be limited.

(2) We have recast the MP algorithm of Suresh and Huynh [29] so that it detects troubled zones by exam-
ining the sub-cells of a zone. This makes it an effective, scale-free, problem-independent detector of trou-
bled zones. Our algorithm for detecting troubled zones has been applied successfully to several stringent
test problems.

(3) We have also realized that in most situations, the variable and its first moment carry a majority of the
information in the flow. Building on that, we have designed hybrid RKDG+HWENO schemes that
reconstruct the second and third moments by using the information contained in the variable and its first
moment. Explicit formulae have been provided for one- and two-dimensional cases and the formulae are
suitable for implementation in practical numerical codes. The resulting schemes have the same order of
accuracy as the corresponding RKDG schemes.

(4) The hybrid RKDG+HWENO schemes are low-storage alternatives to the RKDG schemes that usually
perform almost as well as the RKDG schemes. This has been shown via several accuracy analyses and
stringent test problems in one and two dimensions.
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Appendix

The coefficients in Eq. (2.3) can be obtained in any zone by using the mass matrix and the orthogonality of
the modal bases. We assume that a zone has local coordinates that span [�0.5,0.5]. The zeroth moment is
given by:
u0ðtÞ ¼
Z 1=2

�1=2

uðx; tÞdx
The first moment is given by:
u1ðtÞ ¼ 12

Z 1=2

�1=2

uðx; tÞxdx
The second moment is given by:
u2ðtÞ ¼ 180

Z 1=2

�1=2

uðx; tÞ x2 � 1

12

� �
dx
The third moment is given by:
u3ðtÞ ¼ 2800

Z 1=2

�1=2

uðx; tÞ x3 � x
3

20

� �
dx
Gauss or Gauss–Lobatto quadrature points can be used from Stroud and Secrest [28] to evaluate these inte-
grals numerically. This can be used to initialize the solution on the mesh with the desired level of accuracy and
it can also be used for reconstructing the moments for the RKDG and hybrid RKDG+HWENO schemes
when that is needed.
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